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ABSTRACT

Shin, C., Ha, J. and Jeong, S., 1999. Refraction tomography by blocky parameterization. Journal
of Seismic Exploration, 8: 143-156.

Refraction tomography can be used to interpret the velocity and geometry of the shallow
subsurface for engineering surveys as well as for calculating static corrections in reflection data
using refraction data. Our algorithm calculates head waves and partial derivatives by means of a
wavefront method calculated on a triangular finite element mesh. We parameterize the subsurface
model in blocky layers, such that we invert for the velocities and interface coordinates of the
geologic model. We calibrate our technique by inverting synthetic data computed by the wavefront
method, and then apply this method to the real seismic data we obtained. The velocity and depths
are consistent with those obtained by the more commonly used Coherency Inversion Method.

KEY WORDS: refraction tomography, partial derivatives, wavefront method,
triangular finite element, blocky layers.

INTRODUCTION

Seismic refraction techniques have been widely used to map and delineate
shallow subsurface. In particular, refraction data inversion is routinely used to
calculate static corrections (Russell, 1989) and to estimate the shallow
velocity-depth model (Hampson and Russell, 1984; Docherty, 1992; Landa et
al., 1995) prior to seismic imaging. Seismic traveltime inversion can be
classified into two methods depending upon the choice of the objective function.
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The more common objective is to minimize the error (or difference) between the
field data and the synthetic seismograms. Another, less commonly used
objective is to maximize the cross-correlation between the synthetics and the
observations. Full waveform inversion can be broadly divided into the direct
inversion methods (Clarke, 1984; Yagle and Levy, 1985) and iterative,
non-linear least-squares inversion methods (Tarantola, 1987; Pan et al., 1988).
Ray tracing is one of the more efficient tools used to calculate the forward
seismogram used in seismic inversion. Traveltimes can be obtained by using
three types of ray tracing methods.

In shooting methods (Cassell, 1982; Cerven)’/ et al., 1977), a fan of rays
is shot from a source point at equal angles to the medium of interest. These rays
are propagated until they intercept the earth’s surface somewhere near the
receiver. A more accurate estimates of the path and traveltime between the
source and receiver may then be approached by successively subdividing the
shooting angle. When the structure is complex or the receivers are arranged in
a line, the shooting method can be very efficient in calculating the traveltime.

An alternative and a more expensive bending method (Um and Thurber,
1987; Pereyra, 1988) starts with an initial, usually incorrect, guess for the ray
path connecting the source and receiver. The ray path is bent by a perturbation
method until it satisfies a minimum traveltime criterion. When the interface and
velocity variation can be represented by analytic functions, the bending method
is simple and efficient.

A third method exploits the finite-difference solution to the eikonal
equations (Vidale, 1988). Unfortunately, it is difficult to explicitly express the
traveltime as a function of velocity and interface coordinates.

In this paper, we assume that every geologic model can be subdivided into
a finite number of arbitrary shaped blocky regions, each having a different
constant velocity. Instead of using the shooting method, we use wavefront
algorithm developed by Coultrip (1993) which handles complex geologic models
with irregular topography and for which we may analytically calculate the
partial derivative of the traveltime. In Coultrip’s (1993) method, the geologic
model is subdivided into a triangular finite element mesh. The traveltime
between the source and receiver is calculated from the raypath segment length
and velocity of each element, such that we may easily calculate the partial
derivatives of the traveltime with respect to the velocities and interface
coordinates. While Coultrip (1993) tessellated the arbitrarily shaped geologic
model with small cells, each having different velocity, we choose to fit the data
by moving the nodes and changing the velocity of each blocky region. Although
we may allow the velocity of each element to be arbitrarily, it is more
geologically reasonable (and mathematically stable!) to constrain them to have
some simple functional interrelationship. For simplicity, we will restrict the
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elements in each layer to have the same, yet to be determined, velocity. Such
a blocky parameterization greatly reduces the number of unknowns compared
to the cell based refraction tomography. Since layer boundary nodes position
and elemental velocities are measured with different units, we use a logarithmic
change of variables (Madden, 1972). In the next section, we will show how we
will calculate traveltimes and partial derivatives. We will then show how we
invert our traveltime data using a damped least-squares inversion method.
Finally, we will calibrate this inversion method for both synthetic and real data.

BLOCKY PARAMETERIZATION

Small cell refraction tomography has a tendency to be non-unique because
there are so many parameters compared to the number of observed traveltime
measurements. To reduce this non-uniqueness, we assume that the subsurface
can be divided into a small number of discrete layers or blocky regions
delineated by straight-line segments. Head waves satisfy Fermat’s least-time
principle, as shown in Fig. 1. Coultrip’s (1993) ray tracing can be easily applied
to our geologic model subdivided into blocky regions having abrupt changes of
velocity in the lateral direction. We tessellate our irregular shaped geologic
model by means of Delauney (1934) triangles using an algorithm derived by
Shewchuck (1996). After choosing the ray path which is nearest to the source
and receiver, calculating the traveltime corresponding to those ray paths, we
obtain the traveltime of the head wave from the source to receiver to be:

K
T = E (re/Vigy) (1)
k=1

where k is the number of ray path segments, v,y is the velocity of the i-th
blocky region through which the k-th ray passes,

rk = \[[(Xk+i_xk)2 + (Z‘k+1—zk)2] k = 15213’---’K 3

and x, and z, are the coordinates of the points indicated in Fig. 1. When
applying the Gauss-Newton method using blocky parameterization, we need to
take the partial derivatives of equation (1) with respect to the velocity of blocky
region and interface coordinates. The partial derivatives of equation (1) with
respect to the velocity of each blocky region, v; (for example v,, shown in Fig.
1) is given by:

aT/av, = —(ANP(r; + 15) . 2)
The key point to note is that when we take the derivative of the traveltime

with respect to the velocity of i-th blocky region, the distance associated with
the velocity of i-th blocky region only appears (see the Appendix).
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Fig. 1. Ray path in a model with irregular interfaces. Interfaces are assumed to consist of straight
line segments.

The partial derivatives of equation (1) with respect to the interface
coordinates are given by:

aT/0x, = [(Xe—Xe-)/Vi1g—1yTk—1] — [(Xkﬂ‘xk)/vi(k)rk] ) 3)
and

aT/dz, = [(Zk_zkfl)/vi—](k—l)rk—I] = [(Zkﬂ_zk)/"i(k)rk] . @)

To illustrate the change in traveltime with respect to an interface node
(X,.Z,) shown in Fig. 2, we need to identify the nodes to the left (X, X,) and
right (X,,Z,), along the same interface. Since we assume that the interface of the
blocky region is constrained to move in a straight line when a model parameter
(X.,Z,,) is perturbed, we define:

7 = K2 =ZHEK, X% 4+ Zg — (B2 KKK, » (5a)
and
Z, = [(Zm e Zr)"l(Xm T Xr)] X + Zm - [(Zm . Zr)/(Xm _Xr)]Xm Y (Sb)

Taking partial derivatives of the dependent variables z, and z; with respect
to the independent variable Z,, leads to

azk"’azm = 1 - | (Xk _Xm)/(Xm_Xl) | ] (63.)
and
dzf0Z, = 1 — | (x—XHXK;—X) | . (6b)

Similarly, taking partial derivatives of the dependent variables x; and X;
with respect to the independent variable X, leads to '
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Fig. 2. Shape of interface where the coordinate (X ,Z ) is perturbed into vertical direction.

0%/0X, = 1 — [~ Z)(Zn—Z)| , (6¢)
and
0x;/0X,, = 1 — | @@= Z W (Zs—=Z))| . (6d)

The partial derivative of the traveltime of ray path shown in Fig. 2 then
becomes:

aT/X,, = (0x,/0X,)(0T/dx,) + (9x;/0X)(dT/dx;) , (7a)
and
dT/9Z,, = (0z,/0Z,)(dT/dz,) + (0z/9Z,)(dT/0z) . (7b)

THE DAMPED LEAST-SQUARES METHOD

Since the first breaks of head waves are functions of both the velocity and
the coordinates of the interfaces, we need to perform simultaneous inversion.
Unfortunately, solutions may become very unstable because the partial
derivative of the traveltime with respect to layer velocity and interface
coordinates are measured with different units. To avoid this scale problem of
parameters, we employed the logarithmic variation method developed by
Madden (1972). This change of variables could also be interpreted as a means
of mapping our strictly positive model and measurement variables X, Z., V,,
and T, as having a Poisson, rather than a Gaussian, distribution (Tarantola,
1987). Taking the logarithmic variation of the Taylor series expansion of the i-th
traveltime, T;, about an a priori model estimate, m;, j = 1,2,....],
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]
log(T,)) = log(T? + Z [0log(Tf)/dlog(m,)] dlog m; . (8)

j=1
Defining: p; = logm;, 79 = logT{ and 7; = log(T)), we state

J
n =170 + Y. (97%3p)dp; . )

j=1

After algebraic manipulation, equation (8) becomes:

T
log(T/T9 = Y, (m/T(@T%om,)ép, . (10)

j=1
Defining the matrix S as §; = (m;/T;)(dT,/0m;), and the vector 67 as:
o7 = logT; — logT? = log(T,/TY) .

We apply a standard damped least squares method to equation (10) to
obtain:

(S'S + AD)ép = STor (12)

where I is the identify matrix, and § is a damping vector. By solving equation
(12) and updating the parameter space by a general iterative rule, we can find
the optimum parameters which minimize the residual between the picked
traveltime and the model response.

SYNTHETIC DATA EXAMPLES

Fig. 3 shows the inversion result for a 3-layer model having irregular
topography. Input data consisting of six picked common shot records with one
hundred receivers spaced three meter. As an initial starting model, we define
horizontal interfaces, as shown in Fig. 3(b). The unknown parameters for each
layer are the velocity and the twenty interface coordinates. After the eighth
iteration, the velocity-depth model has converged to the true model. Fig. 3(c)
shows the inverted interface of the model. There are two possible ways to
employ the blocky parameterization for the inversion of head waves. One is the
pure blocky parameterization which requires a priori information of the geologic
model. The other is the mimicking of small cell tomography by subdividing the
geologic model into big cells and allowing the change of the velocity of the
block and the movement of the interface of the block. We employed two
different approaches to attack the traveltime inversion of a complex geologic
model.
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Fig. 3. A three-layered model with irregular surface boundaries and its inverted result. (a) The true
model, (b) the initial model, and (c) the final inverted model.

We now illustrate the non-uniqueness of the traveltime inversion of head
waves by using both the blocky parameterization and the big cell
parameterization. In both parameterization, we allowed the velocity of the block
and the interface of the blocks to change, and used a synthetic data generated
for pinch out model shown in Fig. 4(a). As an initial guess for blocky
parameterization, we used the model shown in Fig. 4(b). After the eleventh
iteration, the inversion result converges to the true model, as shown in Fig.
4(c). The traveltime curves calculated for the models shown in Fig. 4(a) and
4(c) match perfectly and do not show any difference, as shown in Fig. 4(d).
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Fig. 4. A pinch out model with horizontal surface boundaries and its inverted result. (a) The true
model, (b) the initial model (c) the final inverted model, and (d) traveltime curve for the true model
and the final inverted model. The dotted line indicates the traveltime curve for the true model. The

dashed line indicates the traveltime curve of the final inverted model.
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Fig. 5. Non-uniqueness of traveltime inversion of head waves of (a) final inverted result when
sixteen blocks are used, (b) of final inverted model when thirty two blocks are used, and (c) of
dotted line indicates the traveltime curve when sixteen blocks are used to invert the traveltime. The
dashed line indicates the traveltime curve when thirty two blocks are used to invert the traveltime.
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Unlike the blocky parameterization, we take the sixteen and the thirty-two
rectangular blocks as initial guesses. In both cases, we allowed the velocities of
the blocks and the interfaces of the blocks change. Fig. 5(a) shows the
converged model constructed from the initial guess of sixteen blocks and Fig.
5(b) shows the final model constructed from the thirty two blocks. Both
converged models using many blocks as initial guess shows a poor
reconstruction of the true model. The more blocks we used, the poorer images
we obtained. The best final model can be obtained using blocky
parameterization [Fig. 4(c)]. Although we obtained the different results using
three different initial guesses, the traveltime curve calculated for three different
converged models matches perfectly, as shown in Fig. 5(c). This illustrates the
non-uniqueness of the traveltime inversion of head waves, though we did not
show the usual small cell refraction tomography example. The best way for
traveltime inversion of head waves is to use large blocks , which result in the
less non-unique solutions. The best one is to choose the initial model being as
close as the true model, if we have a priori information for the subsurface
structure.

REAL DATA EXAMPLE

After successful experiments on synthetic data, we applied this inversion
scheme to field data provided by IPRG (Israel Petroleum Research Group).
Field seismograms are acquired using a vibroseis source and 120-channel
receivers. Acquisition parameters are shown in Table 1.

Table 1. Acquisition parameters of the IPRG (Israel) field data.

Number of Shots 21
Record Length 1s
Sampling Interval 2 ms
Offset 100 m
Number of Groups 120 ch
Group Interval 20 m

By rough picking and muting the refraction data of 2,520 traces consisting
of 21 shot records, we can preserve the real refraction waveform events, tried
to pick the accurate head wave traveltimes as possible as we can. The average
velocity of the surface layer is calculated using the time-distance curve of the
direct wave. The velocity of the first layer is fixed at 1,250 m/s. The Initial
values of the velocities in the second and the third layers are 2,500 m/s and
4,500 m/s, respectively, which are based on the average of velocities calculated
from the slope of the time-distance curve. The initial depths of the interfaces of
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inverted velocity model obtained by blocky parameterization technique, (c) velocity model obtained

by Landa’s (1995) cross coherence technique, and (d) comparison of the picked traveltimes and the
first arrival time generated from the final updated model.
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the second and third layers, which are composed of eight segments, are 30 m
and 80 m, respectively. Instead of the simultaneous velocity and depth
inversion, we inverted the velocities with the interface fixed and obtained 2,400
m/s and 4,200 m/s. Fixing the velocities of the layered model, we inverted the
interfaces of the horizontal layers so that we could roughly estimate the
geometric structure of the model. After 4 iterations, we obtained the velocity
model shown in Fig. 6(b) when three flat layered model shown in Fig. 6(a) was
used as an initial guess. Fig. 6(c) shows the traveltimes of the final inverted
model and the picked field seismogram. These traveltimes matched well. Note
that our inversion results are in good agreement with the results obtained by
Landa et al.(1995) from the same data set.

CONCLUSIONS

In this paper, we have proposed a new topographic method for the
determination of the velocity-depth model using seismic refraction data. One of
the advantages over other methods is that, unlike the small cell refraction
tomography, the inversion technique can be performed in the blocky
parameterization way using the damped Gauss-Newton method, which result in
reducing the number of unknowns. The wavefront ray tracing allows us to
calculate the traveltime efficiently for complex layered structures with irregular
topography. In addition to this efficient calculation of the forward modeling, the
analytical partial derivative of the traveltime with respect to the velocity and the
interface coordinates of the model can be obtained by simple algebra. The
proposed algorithm can be easily applied to real seismic refraction data.
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APPENDIX

THE PARTIAL DERIVATIVE OF TRAVELTIME USING FERMAT’S LEAST-TIME
PRINCIPLE

To show that when taking a derivative of the traveltime with respect to
Va, 1.e., the distance associated with v, only appears,we can express a simple
traveltime for the ray paths shown in Fig. 1 as

T = sty + 8515 + 8515 + 8,1, + 875, (A-1)
where (s, k = 1,...,5) is the slowness of the blocky region the ray passes
through. For example, taking derivative of equation (A-1) with respect to s,
gives

dT/‘dS] = TIj + I'5 =+ Sl(drl,"dsl) + Sz(dr'z/[dsl) + S3(dr3.'"d81)

+ Sg(dI’JdSi) + Sl(d]‘5/dsl) . (A~2)
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Fermat’s least-time principle requires for traveltime T to be minimum, so
that dT/dr, = O.

Hence the following equation is obtained:
dT/dr, = s, + s,(dr,/dr)) + sy(drsy/dr;) + s,(dr,/dr,) + s,(drs/dr) = 0 . (A-3)
From equation (A-3), s, can be given as
8, = —8,(dr,/dr)) — s,(dry/dr,) — s,(dr,/dr;) — s,(drs/dr;) . (A-4)
Substitution of equation (A-4) into equation (A-2) yields
dT/ds; =1, + 15 . (A-5)
Thus in a similar manner to the above example, when taking the partial

derivative of the traveltime (t) with respect to v,, the term associated with v,
only appears.



