CORDIC을 이용한 디지털 Quadrature
복조기의 VLSI 구현

정원 남 승 현*, 성 원 용**

VLSI Implementation of CORDIC-Based Digital Quadrature Demodulator

Seung Hyeon Nahm*, Won Yong Sung** Regular Members

요 약

디지털 quadrature 복조기는 디지털 통신 시스템에서 변조된 신호의 정확한 위상 복조를 위해 꼭 필요하다. 기존의 방법들은 주로 DDFS (Direct Digital Frequency Synthesizer)를 이용하여 캐리어를 발생시킨 후에 승산기를 이용하여 복조를 수행하였다. 그리고, DDFS에는 주로 ROM (Read Only Memory)을 사용하였는데, 높은 속도와 정확도를 요구하는 경우 ROM의 속도와 크기가 제한이 될 수 있다. 이러한 점을 극복하기 위하여 CORDIC (COordinate Rotation Digital Computer) 알고리즘을 사용하여 주파수 함성은 물론 캐리어 복조까지 수행하는 방식을 제안하였다. 최적의 하드웨어 구현을 위해 제한된 단어길이에 의한 영향을 분석하였으며, 하드웨어 비용면에서 ROM을 사용하는 방법과 비교한 결과 약 1/3 정도로 면적이 줄었다. 제안된 구조를 이용한 진주문형 VLSI 구현 결과를 보인다.

ABSTRACT

Digital quadrature demodulator is needed for the coherent demodulation in the digital communication systems such as Binary Phase-Shift-Keying, Quadrature Phase-Shift-Keying, and Quadrature Amplitude Modulation. Conventionally, the DDFS (Direct Digital Frequency Synthesizer) is used for generating the carrier signal and separate multipliers are used for mixing. And the DDFS is implemented using the ROM (Read Only Memory), which can be a bottleneck when the fast-speed and small-area implementation is required. A new architecture is developed, which employs the circular rotation mode of the CORDIC algorithm for signal mixing as well as carrier generation. To optimize the hardware design parameters, the finite word-length effects of the proposed implementation architecture are analyzed in comparison with a conventional ROM-based architecture. The hardware costs are also estimated, which showed that the proposed architecture occupies only a third of the area of the conventional ROM-based architecture for the same performance. A full-custom VLSI is developed using the proposed architecture.

* 교동기술연구원 전자통신연구실
** 서울대학교 전기공학부

1718
I. 서 론

CMOS 집적회로 기술의 발달로 통신용 시스템의 구현에 있어서 많은 아날로그 회로가 디지털 회로로 대체되고 있다. 디지털 회로로 구현함으로써 공정이 개발한 설계의 많은 know-how가 필요한 아날로그 방식의 단점을 극복할 수 있다. 그리고, 여러가지 전송 속도와 변조 방식, 필터 특성을 갖도록 유연한 구조로 구현할 수 있다.

Quadrature 복조기는 BPSK (Binary Phase Shift Keying)와 QPSK (Quadrature Phase Shift Keying), QAM (Quadrature Amplitude Modulation)과 같은 변조 방식을 사용하는 디지털 통신 시스템의 수신기에서 채널에 가장 가까운 위치하는 부분이다[1][2]. 대역변환 통신 시스템에서는 대역변환 신호를 BPSK 또는 QPSK로 변조하여 송신함으로, 수신기에 quadrature 복조기를 사용하여 기저역역 신호로 변환한 후에 역확산을 수행하게 된다[3][4]. Quadrature 복조기를 구현하기 위해 예전에는 아날로그 주파수 mixer를 사용하는 것이었는데, 앞서 언급한 디지털 구현의 장점 때문에 최근에는 아날로그 회로로 중간 주파수 (Intermediate Frequency) 대역으로 주파수를 넓춘 후, 디지털 quadrature 복조기를 사용하여 기저역역 신호로 추출하는 방식을 사용하는 경향이 크다. 그러므로 디지털 quadrature 복조기를 보았는데, 우선 채널에서는 일반적으로 중간 주파수 (Intermediate Frequency) 대역으로 기저역역으로, 유선 채널에서는 통과대역에서 기저역역으로의 복조에 사용된다. Quadrature 복조를 위해 sine/cosine파를 발생시키는 디지털 발생기가 필요하다. 기존에는 보통 DDFS (Direct Digital Frequency Synthesizer)를 사용하였다[3][4][5].

![Diagaram of quadrature](attachment:quadrature-diagram.png)

그림 1. 디지털 quadrature 복조기

주로 PLL (Phase Locked Loop)을 쓰는 아날로그 방식과 비교할 때 DDFS는 빠른 연속 위상전이 반응 (fast continuous-phase switching response)과 높은 주파수 해상도 (fine frequency resolution), 낮은 대역폭, 좋은 spectral purity 등의 우수한 성능을 보인다. 그러므로 고성능, 고속성의 DDFS를 적은 chip 면적에 구현하기 위한 연구가 진행되어 왔는데, 그 대부분은 ROM (Read Only Memory)을 이용한 색인표 (table)에 sine/cosine 값을 저장하는 방식이었다[5][6][7]. 그러나 주파수의 정밀도를 높이기 위해서는 크기가 큰 ROM이 필요하다. 이를 적절하게 제어할 수록 나타나 속도에 제한을 주게 된다. 또 다른 접근 방법으로 각각 전 알고리즘을 사용하는 것이 있는데, 극 좌표계로 표현된 값을 적교 좌표계로 변환함으로써 sine/cosine 파를 발생시키는데[6][8]. 이 방법은 스파크트워크 덕에 단순화가 가능하다. Tensor 과 경사수로 꼭대기 형태의 것으로 구성되며 피어프라이언동 기법으로 속도를 상당히 높일 수 있다.

그림 1의 quadrature 복조기를 구현하기 위해서는 앞에서 언급한 DDFS로부터 sine/cosine파를 발생시키고, 변조의 골짜기를 통해 캐리어 복조를 수행해야 한다[3][4][5]. 본 연구에서는, 적교 좌표계의 circular rotation을 sine/cosine파의 발생 뿐만 아니라 주파수 mixing에도 사용하는 새로운 구조에 대하여 연구하였다. 제 2장에서는 기본적인 원리에 대해 설명하고, circular rotation을 위한 CORDIC (Coordinate Rotation Digital Computer) 알고리즘에 대해 설명한다[9][10]. 제 3장에서는 최적의 하드웨어 구현을 위하여 기존의 ROM을 사용한 구조와 제안된 CORDIC를 사용한 구조의 양자와 효과를 분석하였다. 제 4장에서는 보수의와 동작 속도를 추가 개선하여 서로 비교하였다. 제 5장에서는 제안된 구조를 사용하여 quadrature 복조기를 설계하여 디지털 Costas loop의 VLSI 구현에 응용한 예를 보이고, 그에 따른 하드웨어 설계에 대해 논의한다. 제 6장에서 결론을 덧붙여 본다.

II. CORDIC 알고리즘을 사용한 Quadrature 복조

Quadrature 복조는 수신된 신호에서 in-phase 성분과 quadrature 성분을 추출하는 과정으로서, 캐리어와 같은 주파수와 위상을 갖는 sine/cosine파를 입력 신호와 곱함으로써 구현할 수 있다. 디지털 quadrature 복조는 그림 1과 같이 A/D (Analog to Digital) 변환
기owitz처럼 디지털화된 입력 신호에 대해서 이 과정을 수행하는 것이다. 그림 1에서 in-phase 성분과 quadrature 성분, \(r_i(k) \)와 \(r_q(k) \)는 다음과 같이 계산된다.

\[
\begin{align*}
 r_i(k) &= K r(k) \cos [\omega_0 k + \theta(k)] \\
 r_q(k) &= K r(k) \sin [\omega_0 k + \theta(k)]
\end{align*}
\]

여기서 \(\omega_0 k + \theta(k) \)는 캐리어 신호의 위상이고, \(K \)는 mixing 이득이다. 이 계산을 하기 위하여, \(\omega_0 k + \theta(k) \)의 위상을 갖는 sine/cosine파를 발생시키려고 하고, 입력 신호 \(r(k) \)의 길림을 수행해야 한다. 이 과정은 벡터 연산으로 표현하면, 다음과 같이 \([r(k) \ 0]' \)의 circular rotation으로 간주할 수 있다.\(^1\)

\[
\begin{bmatrix}
 r_i(k) \\
 r_q(k)
\end{bmatrix}
= \begin{bmatrix}
 K r(k) \cos A(k) \\
 K r(k) \sin A(k)
\end{bmatrix}
= K \begin{bmatrix}
 \cos A(k) & -\sin A(k) \\
 \sin A(k) & \cos A(k)
\end{bmatrix}
\begin{bmatrix}
 r(k) \\
 0
\end{bmatrix}
\] (3)

여기에서 \(A(k) \)는 회전각 \(\omega_0 k + \theta(k) \)를 나타낸다. 그림 2-(가)에서 circular rotator를 사용한 디지털 quadrature 복조기의 제안된 구조를 보았다.

입력신호가 RF 대역에서 이미 in-phase와 quadrature 성분으로 분리되어있기 때문에, 다음과 같이 복소수 퍼미를 수행해야 한다\([5][11]\).

\[
r_i(k) + j r_q(k) = [r_{\text{real}}(k) + j r_{\text{imag}}(k)]
\]

\[
= K [\cos A(k) + j \sin A(k)]
\] (4)

이 복소수 연산도 벡터 형태로 표현하면, 다음과 같이 \([r_{\text{real}}(k) \ r_{\text{imag}}(k)]' \)의 circular rotation으로 볼 수 있다.

\[
\begin{bmatrix}
 r_i(k) \\
 r_q(k)
\end{bmatrix}
= K \begin{bmatrix}
 \cos A(k) & -\sin A(k) \\
 \sin A(k) & \cos A(k)
\end{bmatrix}
\begin{bmatrix}
 r_{\text{real}}(k) \\
 r_{\text{imag}}(k)
\end{bmatrix}
\] (5)

그림 2-(나)에서 circular rotator를 사용한 복소수 입력을 위한 디지털 quadrature 복조기의 계산된 구조를 보였다.

Circular rotation은 CORDIC 알고리즘을 이용하여 효율적으로 구현할 수 있다. CORDIC 알고리즘은 여러 가지 기본 함수들을 반복연산을 통해 계산하는 방법으로서, 복잡한 디지털 신호처리 알고리즘을 구현하는데 많이 사용되고 있다\([9][10]\). Circular rotation을 위한 CORDIC 알고리즘의 기본 알고리즘은 다음과 같다\([6][9]\). 직교 좌표 \([x_n \ y_n] \)와 회전각 \(\theta_n \)이 주어질 때, 다음과 같이 변수들을 초기화한다.

\[
\begin{align*}
x(0) &= -y_n \ \text{sign}(z_n) \\
y(0) &= +x_n \ \text{sign}(z_n) \\
z(0) &= z_n - \text{sign}(z_n) \cdot 2 \ \text{arctan}(1)
\end{align*}
\]

\(i = 0, 1, 2, \ldots, n-1 \)에 대해 다음과 같은 계산을 반복한다.

\[
\begin{align*}
x(i+1) &= x(i) - \mu(i) y(i) 2^{-i} \\
y(i+1) &= y(i) + \mu(i) x(i) 2^{-i} \\
z(i+1) &= z(i) - \mu(i) y(i) a(i)
\end{align*}
\]

여기서 \(\mu(i) \)는 \(z(i) \)의 부호이고, \(a(i) = \text{arctan}(2^{-i}) \)는 미리 정해진 기본값들이다. 이 circular rotation 과정은 다음과 같이 벡터 형태로 나타낼 수 있다.

\[
\nu(i+1) = P(i) \nu(i)
\] (12)

여기서 \(\nu(i) = [x(i) \ y(i)]' \)는 \(i \) 번째 반복에서의 rotation 벡터이고, \(P(i) \)는 정규화하지 않은 rotation 행렬로서 다음과 같다.
III. 제한된 단어길이의 영향 해석

디지털 신호처리에서 제한된 단어길이에 의한 영향의 분석은 경제적인 하드웨어 구현을 위해 필요하다. 이 경우 필요로 하는 성능의 구현을 위해 최소한의 비용, 일반적으로 게이트 수를 소모하도록 단어길이들을 결정해야 한다. 본 장에서는 새로운 제안된 CORDIC을 사용한 디지털 quadrature 복주기에서 제한된 단어길이가 성능에 미치는 영향을 분석하였다. 기존의 ROM을 사용한 구조에 대해서도 비슷한 분석을 하여 두 가지를 비교할 수 있도록 하였다.

그림 4에 CORDIC을 사용한 방법과 ROM을 사용하는 방법의 하드웨어 모델을 보였다. 분석의 일반화를 위해 북소수 입력을 가정하였고, 두 가지 구조 모두 입력 신호의 단어길이를 \(L \)이라 하였다. 주파수 제어를 위해 사용하는 위상 누적기는 두 가지 구조에서 각각으로 위상 신호 출력으로부터 분석을 시작하였다. 위상 누적기의 출력은 디지털 quadrature 변전기에서 요구되는 위상 정밀도에 따라 \(B_C \)와 \(B_R \) bit로 바림 된다. 2) ROM을 사용한 구조에서는 위상 입력을 단어길이 \(B_R \)로 양자화할 때와 sine/cosine의 값을 단어길이 \(M_K \)로 양자화할 때 오차가 발생한다. CORDIC을 사용한 구조에서는 확장하는 단수 \(n \)의 제한과 각도 계산부의 단어길이 \(B_C \)의 제한에 의해 발생하는 각 근사화 오차와, 각 확장부의 단어길이 \(N_C \)의 제한에

2) Subscript \(C \)는 CORDIC을 사용한 구조를 의미하고, subscript \(R \)을 ROM을 사용한 구조를 의미한다.
의한 반올림 오차가 발생한다. 디지털 quadrature 목표의 제한된 단위간이의 영향은, 발생시키는 sine/cosine 각각의 정밀도보다 mixing된 출력의 정밀도로 측면에서 해석하여야 한다.

3.1 CORDIC을 사용한 구조
CORDIC 알고리즘의 양자화 효과에 대하여는 Hu의 연구 결과가 있는데, 본 연구에서는 디지털 quadrature 목표의 구현에 맞도록 더욱 구체화하여 실제 하드웨어 설계 사양의 최적화에 적합하도록 분석하였다. 각도 계산부와 각 회전부에서 발생하는 양자화 영향들을 나누어 설명한다.

3.1.1 각 회전부(Angle Rotation Block)의 양자화 영향
CORDIC 알고리즘에서 각 회전부의 양자화 영향으로는 제한된 단 수에 의한 각 균등화 오차와 각 회전 계산 과정의 반올림 오차가 있다. CORDIC 알고리즘에서 회전각 A는 다음과 같이 n 개의 기본각 $(\alpha(i))$의 선택 조합으로 근사된다.

$$A = \text{sign}(A) \cdot 2 \arctan(1) + \sum_{i=0}^{n-1} \alpha(i) + \delta$$ (15)

여기에서 δ는 각 균등화에 의한 오차이다. CORDIC 알고리즘의 수렴 조건으로부터 δ는 다음과 같이 범위를 갖는다.

$$|\delta| \leq \alpha(n-1) = \arctan(2^{-x+1})$$ (16)

$\delta = 0$일 때의 $v(n)$의 이상적인 값을 $v^*(n)$이라 하면, 계산된 값 $v(n)$은 다음과 같이 표현된다.

$$v(n) = \begin{bmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{bmatrix} v^*(n) = Dv^*(n)$$ (18)

그러므로, 각 균등화에 의한 양자화 오차는 다음과 같이 계산된다.

$$v(n) - v^*(n) = (D-I)v^*(n)$$ (19)

이로부터 각 균등화에 의한 오차한계는 다음과 같이 추정할 수 있다.

$$|v(n) - v^*(n)| \leq |(D-I)||v^*(n)| \leq \alpha(n-1)||v^*(n)||$$ (20)

입력 단위길이가 L이라면, 입력 좌표는 $|x_i| \leq 2^{L-1}$, $|y_i| \leq 2^{L-1}$로 크기가 제한되므로, 식 (19)의 오차한계는 다음과 같이 입력 단위길이로 표현된다.

$$|v(n) - v^*(n)| \leq \alpha(n-1)||v^*(n)|| \leq \alpha(n-1)K(n)\sqrt{2} \cdot 2^{L-1}$$ (21)

반올림 오차를 해석하기 위하여, i번째 계산에서 반올림을 하기 전 값 $v(i)$에, 다음과 같이 양자화 변환자 $Q[.]$을 정의하자.

$$Q[\ v(i)\] = v(i) + e(i)$$ (22)

여기에서 $e(i)$는 반올림에 의한 오차 벡터 $[e_x(i)\ e_y(i)]'$이다. 고정소수점 연산에서 반올림 오차는 $|e_x(i)| \leq \varepsilon$, $|e_y(i)| \leq \varepsilon$로 크게 제한되는데, ε는 하드웨어 정밀도에 의해 결정된다. 고정소수점 표현에서 소수 부분이 M자리라면, $\varepsilon = 2^{-(M+1)}$이다. 각 단위 반올림 오차는 다음 단으로 전파되며, 이 오차의 전파 식은 다음과 같이 얻 수 있다.

$$f(n) = Q[\ v(n)\] - v(n) = e(n) + \sum_{i=0}^{n-1} B(i)e(i)$$ (23)

여기에서 $B(i) = \prod_{k=0}^{i-1} P(k)$이다. 그러므로, 반올림 오차는 다음과 같이 계산된다.

$$|f(n)| \leq |e(n)| + \sum_{i=0}^{n-1} ||B(i)||e(i)$$

$$\leq |e(n)| + \sum_{i=0}^{n-1} ||B(i)||e(i)$$

$$\leq \sqrt{2} \varepsilon \left(1 + \sum_{i=0}^{n-1} ||B(i)||\right)$$

3) 각 균등화 오차를 해석할 때는 반올림 오차가 없다고 가정한다.

4) $\| \cdot \|$와 $| \cdot |$는 각각 행렬과 벡터의 l_2 norm을 뜻한다. $||(D-I)|| = \sqrt{(\cos \delta - 1)^2 + \sin^2 \delta} = 2 \sin|\delta|$.

1722
초기에는 반올림 오차가 없기 때문에 $e(0) = 0$이고, 첫 번째 회전에서는 shift-down이 없으므로 $e(1) = 0$이다.

위의 유도 과정에서 입력값 내부 계산 결과는 모두 같은 단어길이를 갖는다고 가정할 것인데, 이것은 하나의 연산기를 반복해서 사용하는 경우에 적합한 분석 방법이다. 디지털 통신 시스템에서는, 하드웨어를 줄이기 위하여 아날로그 입력 신호를 가능한 한 짧은 단어길이로 양자화하고, 연산에 의해 오차가 누적되는 것을 막기 위하여 내부 중간 계산 결과들은 그보다 긴 단어길이를 갖도록 한다. 그러므로 양자화 오차 분석도 이러한 하드웨어 구조에 맞게 수정해야 한다.

입력의 단어길이가 L이라고 할 때, 계산 도중 scale factor, $K(n)$, 만큼 커지는 값을 수용할 수 있도록 각 회전부의 내부 단어길이는 기본적으로 1 bit 부분 확장을 시켜야 한다[6]. CORDIC 알고리즘에서는 곱셈에 간단한 shift-down 연산으로 대체되었기 때문에 가장 아래 자리에 guard bit를 기록으로 반올림 오차를 줄일 수 있다. 이 때, guard bit의 수 M_C가 전체 shift-down 자리수 $\sum_{d=1}^{n} i$보다 클 필요는 없다. 그리고, 내부 단어길이는 전체 단 수보다는 커야만 shift-down에서 이하는 연산이 의미가 있게 된다. 그러므로, 내부 단어길이 N_C는 다음과 같은 범위를 가질 수 있다.

$$n \leq N_C = L + M_C + 1 \leq L + \frac{n(n-1)}{2} + 1 \quad (24)$$

M_C 개의 guard bit가 첨가되었을 때, 전체 shift-down 자리수가 M_C를 넘지 않는 동안은 반올림 오차가 발생하지 않는다. 즉, $m(m-1)/2 \leq M_C$면 만족시키는 최대의 m에 대해서는 다음과 같은 식을 만족시킨다.

$$e(j) = 0 \quad j = 0, 1, 2, \ldots, m \quad (25)$$

입력이 정수로만 이루어져 있다면, 첨가되는 M_C bit는 소수부로 불 수 있다. 따라서, 반올림 오차란은 단 수에 따라 다음과 같이 계산할 수 있다.

$$|f(n)| = 0$$

$n = m + 1$이면, 반올림 오차가 마지막 단에서만 발생한다.

$$|f(n)| \leq \frac{\sqrt{2}}{2^{L+1}}$$

$$n = m + 2$$일 때는 전과는 오차도 고려해야 한다.

$$|f(n)| \leq \frac{\sqrt{2}}{2^{L+1}} \left(1 + \sum_{i=2}^{m+1} ||B(i)|| \right)$$

전체 양자화 오차를 해석하기 위하여, $\tilde{v}(n) (= Q[I(\tilde{v}(n))]$을 각 근사화 오차와 반올림 오차를 포함하는 계산 결과라 하자. 그러면, $\tilde{v}(n)$은 다음과 같이 표현될 수 있다.

$$\tilde{v}(n) = v(n) + f(n) = Dv^*(n) + f(n) \quad (29)$$

그러므로, 전체 양자화 오차는 다음과 같다.

$$\left| \tilde{v}(n) - v^*(n) \right| \leq \| D - I \| \cdot \| v^*(n) \| + |f(n)|$$

(30)

이것은 CORDIC 알고리즘에서도 발생하는 오차의 상한으로, 하드웨어 비용과 성능의 trade-off를 고려하여 최적의 n과 M_C를 결정해야 한다. 이 해석 결과를 이용하여 그림 5에 $L = 8$인 경우의 CORDIC 오차 한계를 나타내었는데, 여기에서 오차한계는 $K(n)$으로 정규화하였다.

그림 5. CORDIC을 사용한 구조의 오차 한계 ($L = 8$)

1723
3.1.2 각도 계산부(Angle Computation Block)의 양자화 영향

실제 하드웨어 구현에서는, 회전각 A가 먼저 디지털 각도 $Z_{i,n}$으로 양자화된 후 식(15)의 기본값들로 선형 조합으로 근사된다. 2^{B_c}이 2π을 표현하도록 각도를 B_c bit의 2의 보수로 정규화시킬 수 있다[6]. 그러면, 초기 각도 양자화 오차는 반올림을 사용하는 것으로 가정할 때 다음과 같이 제한된다.

$$|A - Z_{i,n}| \leq \frac{\pi}{2^{B_c}}$$ (31)

하드웨어 구현을 위해서는 회전각 A 뿐만 아니라 기본값 $a(i)$도 양자화되어야 하고 실제 각도 계산은 이 값을 사용하여 수행된다. 이에 의해 발생하는 오차는 회전 방향에 영향을 주어서 다른 값으로 수렴하게 할 수도 있다. CORDIC 알고리즘에서 각도 계산 결과 $\hat{z}(n)$은 n 번의 반복 계산을 통해 다음과 같은 값을 갖는데, 이것은 0으로 수렴하도록 되어 있다.

$$\hat{z}(n) = Z_{i,n} - \text{sign}(A) \cdot 2 \cdot \arctan(1) - \sum_{i=0}^{j} \mu(i) d(i)$$ (32)

하지만, 실제 계산은 양자화된 값으로 수행되어 다음과 같은 결과를 얻는다.

$$\hat{\hat{z}}(n) = Z_{i,n} - \text{sign}(Z_{i,n}) \cdot 2 \cdot \arctan(1) - \sum_{i=0}^{j} \hat{\mu}(i) \hat{d}(i)$$ (32)

여기에서 \{ $\hat{\mu}(i)$\}는 양자화된 기본값들이고, \{ $\hat{\hat{d}}(i)$\}는 \{ $\hat{d}(i)$\}를 사용하여 계산된 실제 회전방향 제어신호이다. $i = 0, 1, 2, \ldots, n-2$에서 다음과 같은 부등식을 만족하면, $\hat{\hat{z}}(n)$은 $|\hat{\hat{z}}(n)| \leq \hat{\hat{a}}(n-1)$로 제한된다[9].

$$\hat{\hat{d}}(i) - \sum_{i=0}^{j} \hat{\hat{d}}(j) \leq \hat{\hat{a}}(n-1)$$ (34)

반면에, 각 회전은 원래의 기본값 $a(i)$를 사용하여 수행되므로 실제 회전각 A^*는 다음과 같다.

$$A^* = \text{sign}(Z_{i,n}) \cdot 2 \cdot \arctan(1) + \sum_{i=0}^{j} \hat{\mu}(i) \hat{a}(i)$$ (35)

그러므로 실제 각 근사화 오차 $z^*(n)$는 다음과 같이 유도된다.

$$z^*(n) = A - \text{sign}(Z_{i,n}) \cdot 2 \cdot \arctan(1) - \sum_{i=0}^{j} \hat{\mu}(i) \hat{a}(i)$$ (36)

이것은 다음과 같이 실제 각도 계산 결과 $\hat{z}(n)$로 표현될 수 있다.

$$z^*(n) = \hat{\hat{z}}(n) + A - Z_{i,n} - \sum_{i=0}^{j} \hat{\mu}(i) [a(i) - \hat{d}(i)]$$ (37)

그러면, 실제 각 근사화 오차는 다음과 같이 제한된다[5]

$$|\delta| = |z^*(n)| \leq a(n-1) + |A - Z_{i,n}| + \sum_{i=0}^{j} |a(i) - \hat{d}(i)|$$ (38)

하드웨어 구현을 위해서는, 각각 계산 오차도 고려되어야 한다. 그림 6에 모의 실험 결과에서 나타난

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{graph.png}
\caption{(a) In-phase Error, (b) Quadrature Error}
\end{figure}

그림 6. CORDIC을 사용한 구조의 모의실험 결과에서 나타난 오차 histogram : (a) in-phase 성분 (나) quadrature 성분

5) 마지막 단의 각도 계산은 설계로 하드웨어 구현할 필요가 없으므로 $\hat{\hat{a}}(n-1) = a(n-1)$이라고 할 수 있다.
오차의 histogram을 보였다. 여기에서 정규화된 오차가 0.5보다 작도록 하기 위하여 \(L = 8, B_C = 16, n = 10, M_C = 5 \)을 사용하였는데, 이것은 각도 계산 오차도 고려하여 결정된 값들이다.

3.2 ROM을 사용한 구조

ROM을 사용한 DDPS는 각도 양자화와 출력 양자화의 두 가지 오차 발생원이 있다. 각도 \(A \)는 다음과 같이 양자화된다.

\[
A = Q(A) + \delta \tag{39}
\]

\(\delta \)는 반올림에 의한 오차로서 각도 입력의 단위가가 \(B_N \) bit일 때 \(|\delta| \leq \pi/2^N \)로 제한된다. 그리면, DDPS의 sine/cosine 출력은 다음과 같다.

\[
\begin{align*}
\cos(A - \delta) + e_x & \quad (40) \\
\sin(A - \delta) + e_y & \quad (41)
\end{align*}
\]

여기에서 \(e_x \)와 \(e_y \)는 출력의 반올림 오차로서, DDPS의 출력 단위가가 \(B_N \) bit일 때 \(|e_x| \leq \varepsilon, |e_y| \leq \varepsilon \)을 만족한다. \(\varepsilon = 1/(2^N - 1) \)이다.\(^6\)

Quadrature 복조기의 출력은 다음과 같다.

\[
\begin{bmatrix}
\tilde{r}_1 \\
\tilde{r}_0
\end{bmatrix} =
\begin{bmatrix}
\cos(A - \delta) + e_x & - \sin(A - \delta) - e_y \\
\sin(A - \delta) + e_y & \cos(A - \delta) + e_x
\end{bmatrix}
\begin{bmatrix}
\tilde{r}_{real} \\
\tilde{r}_{imag}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\cos(A - \delta) - \sin(A - \delta) \\
\sin(A - \delta) + \cos(A - \delta)
\end{bmatrix}
\begin{bmatrix}
\tilde{r}_{real} \\
\tilde{r}_{imag}
\end{bmatrix}
\]

\[
\begin{bmatrix}
e_x - e_y \\
e_y + e_x
\end{bmatrix}
\begin{bmatrix}
\tilde{r}_{real} \\
\tilde{r}_{imag}
\end{bmatrix}
\]

위 식은 백터 형태로 다음과 같이 쓸 수 있다.

\[
\tilde{v} =
\begin{bmatrix}
\cos \delta & \sin \delta \\
- \sin \delta & \cos \delta
\end{bmatrix}
\begin{bmatrix}
\cos A - \sin A \\
\sin A & \cos A
\end{bmatrix}
\begin{bmatrix}
\tilde{r}_{real} \\
\tilde{r}_{imag}
\end{bmatrix}
\]

\[
\begin{bmatrix}
e_x - e_y \\
e_y + e_x
\end{bmatrix}
\begin{bmatrix}
\tilde{r}_{real} \\
\tilde{r}_{imag}
\end{bmatrix}
\]

\[
= v + Er \tag{43}
\]

여기에서 \(\tilde{v} = [r_f r_q] \)이고 \(r = [r_{real} r_{imag}] \)이다. 위치에서 얻은 각도의 양자화 오차를 포함하고 있고, 실제 값은 반올림 오차를 포함하고 있는데, 이 두 가지 항을 분리하여 분석한다.

\(\delta = 0 \)일 때 \(v \)의 이상적인 결과를 \(v^* \)라 하자. 그러므로,\(v \)의 실제 계산 결과는 다음과 같이 표현된다.\(^7\)

\[
v =
\begin{bmatrix}
\cos \delta & \sin \delta \\
- \sin \delta & \cos \delta
\end{bmatrix}
\begin{bmatrix}
v^* \equiv Dv^*
\end{bmatrix}
\]

\[
= v - v^* = (D - I) v^* \tag{45}
\]

오차란에는 다음과 같이 추정된다.

\[
|v - v^*| \leq \|(D - I)\| \cdot |v^*| \leq |\delta| \cdot |v^*| \leq \frac{\pi}{2^N} \cdot |v^*| \tag{46}
\]

입력 단위가가 \(L \) bit일 때, 입력은 \(|r_{real}| \leq 2^{L-1} \)와 \(|r_{imag}| \leq 2^{L-1} \)로 제한되므로, 식 (46)의 오차란에는 다음과 같이 입력 단위가가 입력 단위가가로 표현할 수 있다.

\[
|v - v^*| \leq \frac{\pi}{2^N} \cdot |v^*| \leq \sqrt{2} \pi \cdot 2^{L-B_x - 1} \tag{47}
\]

반올림 오차는 다음과 같이 계산될 수 있도록 유도할 수 있다.

\[
|Er| \leq |E||r| \leq \frac{\sqrt{2}}{2^{N_x - 1}} \cdot 2^{L-1} \tag{48}
\]

\(^6\) \(-1 \)과 \(-1 \)을 각각 \(2^{N_x - 1} - 1 \)와 \(-2^{N_x - 1} + 1 \)로 나타내어야 한다.

\(^7\) 각도 양자화 오차를 배제할 때는 반올림 오차를 고려하지 않는다.
두 가지 오차를 포함하는 전체 오차환계는 다음과 같다.

\[
|\tilde{v} - v^*| \leq \|(D - I)\| \cdot |v^*| + |E_{\eta}|
\leq \sqrt{2} \cdot \frac{2^{L - B_R - 1}}{2^{M_S - 1}} + \frac{\sqrt{2}}{2^{M_S - 1}} \cdot 2^{L - 1}
= \sqrt{2} \cdot 2^{L - 1} \left(\frac{1}{2^{M_S}} + \frac{\sqrt{2}}{2^{M_S - 1}} \right)
\]

그림 7에 \(L=8\)일 경우의 오차환계를 계산한 결과를 보이다. 여기에서 오차환계는 \(2^{M_S - 1}/(2^{M_S - 1} - 1)\)를 급 함으로써 정규화하였다. Random한 입력과 위상으로 모의 실험하여 이 본석을 확인하였는데, 그림 8에 모의 실험 결과에서 나타난 오차의 histogram을 보였다.

정규화된 오차가 0.5 보다 적도록 하기 위하여 \(L=8, B_R=11, M_S=10\)로 결정된 단어길이들을 사용하였다.

IV. 하드웨어 비용/속도 분석 및 비교

CORDIC를 사용한 구조와 ROM을 사용한 구조의 하드웨어 효율성을 비교하기 위하여 각각의 하드웨어 비용과 속도를 분석하였다. 공정한 비교를 위해서는 합리적인 성능 평가 기준이 마련되어야 하는데, 여기에서는 quadrature 복조기를 동등했을 때 신호의 유해 숫자를 유지시킬 수 있는 정도의 성능을 갖도록 설계 사양을 맞추었다. 그러므로, 계산된 결과는, 그림 9에 보인바와 같이, 이상적인 복조기를 한 후에 같은 단어 길이로 양자화한 것과 동등하게 된다. 출력은 mixer 이득으로 정규화한 것으로 가정하였는데, CORDIC를 사용한 구조에서는 \(K(\pi)\)이고 ROM을 사용한 구조에

![그림 7. ROM을 사용한 구조의 오차환계 (L=8)](image1)

![그림 8. ROM을 사용한 구조의 실험 결과에서 나타난 오차 histogram (a) in-phase 성분 (b) quadrature 성분](image2)

![그림 9. 목표 오차환계를 조정하기 위한 양자화 모델](image3)

서는 \(2^{M_S - 1}/(2^{M_S - 1} - 1)\)이다.

4.1 하드웨어 비용

하드웨어 비용을 추정하기 위하여 VTI 1.0 \(\mu\)m cell library를 사용하였다. ROM과 곱셈기는 규칙적인 구조로 효율적으로 구현 가능하게 하기 위해 transitor 수나 gate 수는 공정한 비교 대상이 됐다. 그래서, macro-cell들이 차지하는 면적을 cell compiler library를 참조하여 표 1과 같이 계산하였다. 여기서 단위는 \(l_{\text{mda}} = 0.5\mu\text{m}\)이다.[12][13]. 그림 4-(a)의 ROM을 사용한 구조를 그대로 고안하자면, sine과 cosine 값은 저장하기 위하여 두 개의 ROM이 필요하고 복소수 연산을 위하여 네 개의 곱셈기와 두 개의 덧셈기가 필요하다. 이 때 sine/cosine 등의 대치성을 이용하여 ROM의 크기는 정밀도에 영향을 주지 않으면서도 1/8로 줄일 수 있다. 즉, 0에서 \(\pi/4\)까지의 sine과 cosine 값을만
저항하면 나머지 대칭성을 이용하여 구할 수 있으므로, ROM의 주소가 \(B_R \) bit로 \(B_R - 3 \) bit 로 된다. 또한, 출력의 부호는 각도 입력으로부터 정해질 수 있어서 부호를 나타내는 bit가 필요 없으므로, 출력의 단어길이가 \(M_R \) bit에서 \(M_R - 1 \) bit로 된다. 크기가 클 때는 ROM의 크기를 줄이기 위한 일반적인 기술들은 더 쓸 수 있지만, 부가 회로가 추가되어서 추정의 일반화가 어렵기 때문에, 여기에서는 더 이상의 ROM의 크기를 줄이는 기술은 사용하지 않는 것으로 가정하였다. 길이는 출력 정밀도에 큰 영향을 미치므로 크기를 줄일 수 없지만, 덧셈기의 크기는 반올림 회로를 이용하여 다음 계산에 필요한 만큼의 정밀도로 줄일 수 있다. 표 2에서 ROM을 사용한 구조에 필요한 하드웨어를 요약하였다.

CORDIC을 사용한 구조는 각 회전부의 각도 계산부의 두 개의 복리적으로 구성된다. 각 회전부는 덧셈 기/뺄셈기 (adder/subtractor) 배열과 고정된 hard-wired shift들로 구성되어 있다. 각도 계산부는 덧셈기/뺄셈기 배열로 구성되는데, 여기에는 고정된 값과 계산만 수행하면 되므로 전자산기보다 간단한 논리회로로 구현할 수 있다. 그리고, 첫번째와 마지막 단계에서는 계산이 필요 없고, 나머지 단계에서도 \(B_C - 3 \) bit 덧셈/뺄셈이 필요하다(7). 표 3에 CORDIC을 사용한 구조에 필요한 하드웨어들을 요약하였다.

정밀도의 요구사항을 고려하면, 제 3장의 양자화 효과에 대한 분석을 이용하여 단어길이들을 결정할 수 있다. 표 4에 두 가지 구현 방법에 대해 최적의 단어길이들을 구어서 정리하였다. 이 때 필요한 하드웨어 비용을 추정하여 표 5에 정리하였다. 여기에서 ROM을 사용한 구조의 출력 단어길이는 CORDIC을 사용한

| 표 3. CORDIC를 사용한 구조에서 요구되는 하드웨어 |
|-----------------------------------|---------|---------|
| Hardware Unit | Number of Unit | Size |
| Adder/Subtractor | \(2 \times n\) | \(N_C\) |
| Adder/Subtractor(Fixed) | \(n - 2\) | \(B_C - 2\) |

| 표 4. 디지털 quadrature 복조기의 최적 단어길이 |
|-----------------------------------|---------|---------|---------|---------|
| Input | WL | ROM-Based Precision 0.5 | CORDIC-Based Precision 0.5 |
| \(L\) | \(B_R\) | \(M_R\) | \(N\) | \(B_C\) | \(n\) | \(M_C\) | \(N_C\) |
| 3 | 6 | 5 | 8 | 9 | 5 | 3 | 7 |
| 4 | 7 | 6 | 10 | 10 | 6 | 4 | 9 |
| 5 | 8 | 7 | 12 | 11 | 7 | 4 | 10 |
| 6 | 9 | 8 | 14 | 14 | 8 | 4 | 11 |
| 7 | 10 | 9 | 16 | 13 | 9 | 5 | 13 |
| 8 | 11 | 10 | 18 | 14 | 10 | 5 | 14 |
| 9 | 12 | 11 | 20 | 15 | 11 | 5 | 15 |
| 10 | 13 | 12 | 22 | 17 | 12 | 5 | 16 |

| 표 5. 디지털 quadrature 복조기의 하드웨어 비용 (단위: \(\lambda^2\)) |
|-----------------------------------|---------|---------|---------|---------|
| L | ROM-Based Precision 0.5 | CORDIC-Based Precision 0.5 |
| \(L\) | ROM | CmplxMult | Total | AngleRot | AngleComp | Total |
| 3 | 963020 | 51200056 | 6084576 | 1211400 | 4152000 | 1626200 |
| 4 | 1088919 | 5700678 | 6799687 | 1868400 | 5536000 | 2420000 |
| 5 | 1223668 | 8726740 | 9959408 | 2422000 | 8650000 | 3287000 |
| 6 | 1414956 | 9532384 | 1094730 | 3048000 | 1349400 | 4394200 |
| 7 | 1680000 | 11397625 | 14877652 | 4048200 | 1453200 | 5501400 |
| 8 | 2156544 | 14219728 | 16376272 | 4844000 | 1799200 | 6643200 |
| 9 | 2984968 | 18534292 | 21519260 | 5709000 | 2335500 | 8044500 |
| 10 | 4679592 | 19778200 | 24453292 | 6643200 | 2941000 | 9584200 |
구조와 함께 되도록 환경의 단어길이를 조정하였다. CORDIC을 사용한 디지털 quadrature 복조기가 ROM을 사용한 방식에 비해 약 1/3 정도의 작은 면적을 갖는 것을 볼 수 있다.

4.2 동작 속도

Macrocell들의 동작 속도를 추정하기 위하여 표 6의 VTI 1.0 μm cell library를 사용하였다[12][13]. ROM과 multiplier의 지연시간은 표에 주어진 바와 같이 크기에 대한 식으로 주어지지만, adder/subtractor의 지연시간은 data path library로부터 추정된 것이기 때문에 단어길이가 큰 경우 조금 과장되게 추정될 가능성이 있다.

表 6. Speed estimation of the hardware macrocells

<table>
<thead>
<tr>
<th>$2^N \times M$ bit ROM</th>
<th>precharge time (ns)</th>
<th>access time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N x M multiplier</td>
<td>propDelay for square multipliers (N=M)</td>
<td>(N/2) + 2.9</td>
</tr>
<tr>
<td></td>
<td>propDelay for non-square multipliers (N>M)</td>
<td>(M/M) + 2</td>
</tr>
<tr>
<td>N-bit adder/subtractor</td>
<td>N(ns)</td>
<td></td>
</tr>
</tbody>
</table>

表 7. ROM precharge time

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

表 8. ROM access time

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

ROM을 사용하는 구조에서는 ROM의 주소 입력으로부터 복수수 콤비네이션이 총력까지의 임계경로 (critical path)가 된다. 그러므로 전체 지연시간은 ROM의 총력 지연시간과 하나의 콤비네이션이 하나의 단위기의 지연 시간들로 해더 시간으로서 표 9에 나타내었다.

表 9. Speed of the digital quadrature mixer (ns)

<table>
<thead>
<tr>
<th>L</th>
<th>ROM</th>
<th>CmplxMult</th>
<th>Total</th>
<th>AngleRot</th>
<th>AngleComp</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>19</td>
<td>25.5</td>
<td>44.5</td>
<td>35</td>
<td>39</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>27.0</td>
<td>47.0</td>
<td>44</td>
<td>49</td>
<td>56</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>28.5</td>
<td>51.5</td>
<td>54</td>
<td>60</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>29.5</td>
<td>55.5</td>
<td>65</td>
<td>72</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>31.0</td>
<td>65.0</td>
<td>77</td>
<td>85</td>
<td>109</td>
</tr>
</tbody>
</table>

CORDIC을 사용하는 구조에서는 임계경로는 그림 10에 보인 바와 같이 상당히 복잡한데, 그림의 각 회전부의 각 단은 X block과 Y block을 차례차례 나타낸다. 각 회전부는 right shift 동작을 하므로 그림에서 왼쪽에 앞 단의 최상위 자리에서부터 현재 단의 최상위 자리까지의 carry 전파가 필요하다. 그리고 단이 이동할수록 전파되는 길이가 길어진다. 각각의 단이며는 각 단에서 앞 단으로부터 계산된 부호가 필요하므로

그림 10. Critical path of the CORDIC-based architecture
로 앞 단의 계산이 끝날 때까지 기다려야 한다. 그런 데 단이 나아갈수록 계산되는 각도가 작아지므로 부호를 검출하는데 걸리는 시간이 짧아지게 된다. 각화 전부는 각 단에서 각계산부의 계산이 끝나면 동작을 할 수 있다. 그러므로 전통적인 임계경로는 이 두 부분의 더 긴 경로로 이루어진다. 표 9에 추정된 결과는 이러한 점을 고려한 값들이다.

V. CORDIC을 이용한 디지털 Costas Loop의 VLSI 구현

세롭게 제안된 CORDIC을 사용한 디지털 quadrature 복조기를 이용하여 BPSK 대역확산 통신용 수신기의 일부분인 디지털 Costas loop을 구현하기 위한 VLSI를 설계하였다. 디지털 Costas loop은 BPSK 변조된 신호의 동기 복조를 위해 효율적으로 사용될 수 있는 일종의 위상 추적 회로로서 그림 11에 볼록도를 보였 다. 이를 모든 디지털 회로로 구현하기 위하여 각 부분을 제한된 단어길이로 갖는 디지털 연산자로 대체하여 모의실험을 통해 최적의 설계사항들을 정하였다.

그림 11의 전선 부분이 디지털 quadrature 복조기로서, 병렬 CORDIC 프로세서 구조를 사용하여 구현하였다. 이 시스템은 그림 2(가)와 같이 실수 입력이 들어오며, 입력 단어길이 L은 모의실험을 통해 4 bit로 결정하였다. 이 시스템에는 \(\gamma_L\)이 0이므로 식 (20)의 각 근사화 오차관계는 다음과 같이 수정되어야 한다.

\[
|v(n) - v^*(n)| \leq a(n-1)|v^*(n)| \leq a(n-1)K(n)2^{L-1}
\]

(50)

수정된 오차관계를 이용하여 최적의 단어길이들을 결정하는데, 내부 단어길이를 하나 높이는 것보다 단 수를 늘리는 것이 하드웨어 비용이 더 필요하므로 단 수 n을 먼저 결정해야 한다. 여기에서는 정규화된 CORDIC 오차가 0.5 보다 작게 하는 것을 목표로하여 \(n = 6, N_c = 8, B_c = 8\)로 결정하였다.

양자화 오차 해석 결과에 따르면, 그림 3의 CORDIC 프로세서 구조는 더욱 간단해질 수 있다. 첫번째 ADD/SUB 블록은 두 개의 4 bit 수를 더하거나 뺴야 하므로, 5 bit의 전가산기로 충분하다. 같은 식으로 두번째, 세번째 단은 각각 6 bit, 8 bit의 전가산기가 필요하다. 하지만, down-shift된 bit들의 연산에는 전가산기를 사용할 필요가 없다. 그림 12에 세 번째 ADD/SUB 블록에서 전가산기 대신 반가산기를 사용한 회로를 보였다. 내부 단어길이를 8 bit로 정했기 때문에, 나머지 다른 ADD/SUB 블록들은 반올림 회로를 갖는 8 bit 전가산기로 구현해야 한다. 그림 13에 그 회로를 보였다. 각도 계산은 항상 계산된 값의 크기가 양보다 작기 때문에, 모든 단에서 8 bit의 덧셈,
그림 13. 반올림 회로를 포함한 ADD/SUB 블록

그림 14. 디지털 quadrature 복조기의 layout을 위한 floor plan

그림 15. 디지털 Costas Loop 회로의 layout

6. 불확정을 수행할 필요가 없다. 그리고 미리 정해진 값을 더하거나 빼기 때문에 전가산기 대신 간단한 회로로 대치할 수 있다. 이러한 점들을 이용하여 그림 14와 같은 floor plan으로 compact한 layout이 가능하다.

그림 15에 전체 Costas loop 회로의 layout 결과를 보았다. 현재 0.8 μm CMOS 공정을 사용하여 면적은 1.5 mm x 1.8 mm이고 동작 속도 (IF 주파수 x 4)는 50 MHz가 될 것으로 기대된다.

VI. 결 론

대역확산 동신은 물론 각종 유무선 디지털 동신 시스템의 핵심 부품인 quadrature 복조기를 디지털로 구현하기 위한 새로운 구조에 대하여 연구하였다. CORDIC 알고리듬의 circular rotation을 사용하여 sine/cosine과의 생성과 주파수 mixing을 한계에서 수행하도록 하였다. 기존에 주로 사용하던 ROM과 루어기를 사용하는 방법에 비하여 구조가 매우 규칙적이어서 설계가 용이하고 작은 면적에 구현할 수 있다. 목표 성능이 주어졌을 때 최적의 하드웨어 사양들을 결정할 수 있도록 제한된 단어길이에 대한 영향을 분석하였다. 비교를 위하여 ROM을 사용하는 방법에 대해서도 제한된 단어길이의 영향을 분석하였고 하드웨어 효율을 비교하기 위하여 standard cell library를 사용하여 각각의 구조의 면적을 추정하였다. CORDIC을 사용하는 구조가 ROM과 루어기를 사용하는 구조에 비해 약 1/3 정도의 면적을 차지하는 반면 동작 속도에서는 불리함을 알 수 있었다. 하지만 CORDIC processor의 동작 속도는 pipelining 기법이나 새로운 빠른 알고리듬들로 극복될 수 있다. 제안하는 구조의 디지털 quadrature 복조기를 사용하여 디지털 Costas loop을 매우 작은 면적에 전자무형 VLSI로 구현하였다.

참고 문헌

남 승 현(Seung Hyeon Nahm) 정회원
1969년 2월 22일생
1991년: 서울대학교 전자계측공학과 졸업(공학사)
1993년: 서울대학교 대학원 전자계측공학과 졸업(공학석사)
1998년: 서울대학교 대학원 전기공학부 졸업(공학박사)
1997년 10월~현재: 고등기술연구원 전자통신연구실 석임연구원
※ 주관심분야: 디지털 신호처리, 디지털 신호처리 시스템의 구현
e-mail: namsh@iae.re.kr

상 원 응(Won Yong Sung) 정회원
1978년 2월: 서울대학교 전자공학과 졸업(공학사)
1980년 2월: 한국과학원 전기 및전자공학과 졸업(공학석사)
1980년~1983년: 금성사 중앙연구소
1987년 7월: 미국 University of California, Santa Barbara 전기 및 컴퓨터공학과 졸업(공학박사)
1989년 2월~현재: 서울대학교 전기공학부 및 반도체공통연구소 부교수
1993년~1994년: Comdisco Systems (현 Alta Group) 기술 고문, 반도체공통연구소 설계 연구 부서
※ 주관심분야: 병렬처리 컴퓨터, VLSI를 이용한 고속 신호 처리
e-mail: wysung@dsp.snu.ac.kr