On Pseudogapping in HPSG

Dong-woo Park

1. Introduction

English has ellipsis like these examples.

(1) a. Sluicing:
 She read something, but she won't say what \[,\]

b. Verb Phrase Ellipsis:
 She read something and he did \[,\] too.

c. Pseudogapping:
 She'll read something to Sam, but she won't \[,\] to Billy.

d. Gapping:
 Some read something to Sam and others \[,\] to Billy.

e. Right Node Raising:
 She deliberately \[,\] and he accidentally, read something.

f. Comparative Deletion:
 Mary has read more books than Bill has \[,\]. (Johnson, 2008)

Sentences in (1) have a certain phenomenon in common. In those sentences except (1e), reduplicated elements of the right clause are elided, remaining their antecedent in the left clause. vP-ellipsis is referred to phenomenon that the vP in the right clause is elided, except an auxiliary verb. On the other hand, gapping involves the deletion of finite verb, remaining its arguments. Pseudogapping shares its characteristics with gapping and vP ellipsis.

Generally, pseudogapping occurs in coordination structures, such as (1c). However, it is related to not only coordination structures, but also subordination structures and comparative structures.

(2) If you don't believe me, you will \[,\] the weatherman. (Levin, 1978)

(3) John gave Bill a lot more money than Bill will \[,\] Susan.
In HPSG, studies related to gapping have not flourished and even there is no schema which can account for pseudogapping. In this paper, I will examine some previous studies of pseudogapping within the Minimalist Program. And then, a gapping schema in HPSG will be modified in order to explain pseudogapping in a proper way. So a new schema will be introduced that can capture the characteristics of pseudogapping in subordination and comparative structures as well as coordination structures.

2. Previous studies

Takahashi (2003) compares two existing approaches to explain pseudogapping. The first one is the Heavy NP Shift (HNPS) approach (Jayaseelan, 1990). This approach captures pseudogapping as the result of vP deletion, which applies right after the application of HNPS. In (4), *the paper* first moves to the right, out of vP, just like a *brand-new toy* in (3), and then vP is elided.

(4) We gave *t* to John on Friday [a brand-new toy]. (Pesetsky, 1995)

(5) Although John wouldn't give to Bill the book, he would

\[\text{[a give [t to Susan] the paper]}. \]

This method is faced with two obstacles. The first one is that the first object, an indirect object, in double object constructions cannot undergo HNPS. Despite this, the grammaticality of (6) is not degraded.

(6) Although John wouldn't give Bill the book, he would

\[\text{[a give [the book] Susan]}. \]

The second obstacle is that more than one item cannot undergo HNPS in a clause. (7) is ungrammatical, since both indirect object and direct object undergo HNPS. In contrary, (8) is grammatical even though both indirect object, *Susan*, and direct object, a *paper*, seem to have undergone HNPS.
(7) *John gave \(t_1, t_2 \) yesterday [the tall man], [the book written by the professor at MIT].

(8) Although John would give Mary a book, he wouldn’t give Susan a paper.

The second approach to pseudogapping is the Object Shift (OS) approach (Lasnik, 1999). Unlike the HNPS approach, OS is a leftward movement. In (9), Susan moves to the left, out of vP and the rest of the vP deletes.

(9) … and he would [Susan [\(vP \) give the book]]

(10) … and he would [the paper [\(vP \) give Bill]]

However, a direct object cannot cross over an indirect object by OS. Even though (10) should be ungrammatical under the OS approach, it is grammatical and cannot be accounted for with OS.

To overcome the insufficient explanation, Takahashi (2003) suggests an Eclectic Approach. This approach is the union of OS and HNPS and proper to explain the remnants, as in (11).

(11) Although he wouldn’t give the book to Bill, he would [\(vP \) the paper [\(vP \) give Bill]] to Susan]

Takahashi (2003) explains pseudogapping by allowing OS. But one thing he has to prove is the position the object moves to. A new phrase might be inserted between TP and vP. It does not matter what that phrase is. Suppose that position is in the focus phrase (FocP). In order for Foc to attract the object, there should be at least one EPP in Foc.

(12) a. Mary gave Susan a lot of money and John will give Bill a lot of advice.

1) Lasnik (1999) claims that this sentence is ungrammatical, because a direct object is a remnant. However, it can be grammatical under certain circumstance as Baltin (2003) and Bowers (1998) claim.
b. Mary gave Susan a lot of money and John will give Bill a lot of advice.

According to Takahashi (2003), both (12a) and (12b) are grammatical. In (12a), Bill undergoes OS, and a lot of advice HNPS, followed by vP ellipsis. In (12b), every derivation step is identical with (12a), except that Bill does not move to the higher maximal projection. That means Foc in (12a) has an EPP, while that in (12b) does not. Of course, cross-linguistically, whether an EPP is in certain phrase or not depends on each language. For example, in languages which allow wh-movement such as English, C has an EPP. On the other hand, wh-in-situ languages like Chinese do not have an EPP in C. However, it is difficult to think out the case that existence of EPP in certain lists wholly depends on its circumstances. That is too arbitrary. What if (12b) does not have FocP? This approach also confronts the same situation, arbitrariness. That is, it is not clear when TP selects FocP as a complement.

Beavers and Sag (2004) proposes a strong schema, outlined in (13) to explain all kinds of coordination structures.

\[
(13) \quad AB_n B_{n+1} \ldots B_2 \overline{CB}_1 D
\]

\[
\begin{align*}
AB_n D & \quad AB_{n+1} \ldots B_2 \overline{CB}_1 D \\
& \quad AB_{n+1} \ldots \quad \ldots \\
& \quad \ldots \quad AB_2 \overline{CB}_1 D \\
& \quad AB_2 D \quad AB_2 \overline{CB}_1 D \\
& \quad AB_D \quad CAB_D \\
& \quad C \quad AB_D
\end{align*}
\]

This schema suggests branching n-ary coordinate structures. A, B, and D are strings and C is a coordinator. Furthermore, A and D can be either empty or
non-empty. When A and D are all empty, this case produces (14a), the constitute coordination. If A is non-empty and D is empty, (14b), the Argument Cluster Coordination is produced. And Right Node Raising is produced when only A is empty as in (14c). At last, (14d) shows the case that both A and D are non-empty.

A new single HPSG schema is introduced to explain all phenomena in (14). It can be encoded in (15) as follows.

\[(14)\]
\begin{enumerate}
\item Constituent Coordination

\textit{John, Bill and Mary}
\item Argument Cluster Coordination (ACC)

\textit{Bill gave a dog a bone and a policeman a flower}
\item Right Node Raising (RNR)

\textit{Sandy cooked and Mary ate, a pizza}
\item Both ACC and RNR

\textit{John told Mary that Bill, and Kim that Pat, was a die-hard fan of Gillian Welch}
\end{enumerate}

And Beavers and Sag (2004) employs the DOM list device, which was first suggested in linearization theory (Reape, 1994). DOM list was devised to allow elements in sentences to change their positions. Furthermore, it can be used to make it possible to enable some elements in the daughter's DOM lists not to be present in the mother's DOM lists.

A new single HPSG schema is introduced to explain all phenomena in (14). It can be encoded in (15) as follows.

\[(15)\]
As shown above, [A] in the mother's DOM list comes from the first conjunct, while [D] comes from the second conjunct. And the different elements in each conjunct [B₁] and [B₂] in the daughters' DOM lists are preserved in the mother's DOM list. A coordinator is represented as [C] and the right conjunct with a coordinator has [CRD +]. On the other hand, the left conjunct has [CRD –]. This material prevents us from predicting sentences in (16) correctly ungrammatical.

 b. *And Jan walk, and Jan chews gum.

2.3. Chaves (2005)

Even though Beavers and Sag (2004) made a single comprehensive schema in order to account for coordination structures including CC, CC, and RNR, Chaves (2005) points out that it fails to explain sentences in (17), called gapping, since sharing elements can be located in non-peripheral positions.

(17) a. John will bring dessert, and Mary, wine.
 b. Yesterday we traveled sixty miles, and on the day before, fifty.
 c. Ann reads stories to her kids, and Maria, to the students.

(18) cnf-cxt =

\[
\begin{align*}
\text{MTR} & \begin{cases}
\text{DOM} & [A_1] \oplus [L_1] \oplus [I_1] \oplus [R_1] \oplus [C] \oplus [L_2] \oplus [R_2] \oplus ne - list \oplus [D_2] \nonumber \\
\text{SYN} & 0
\end{cases} \\
\text{DTR} & \begin{cases}
\text{DOM} & [A_1] \oplus [L_1] \oplus [I_1] \oplus [R_1] \oplus \text{ne - list} \oplus [D_1] \nonumber \\
\text{CRD} & 0 \\
\text{DOM} & [C] \oplus (\text{CONJ} \oplus [A_1] \oplus [L_2] \oplus [I_2] \oplus [R_2] \oplus \text{ne - list} \oplus [D_2]) \\
\text{SYN} & 0 \\
\text{CRD} & 0
\end{cases} \\
\end{align*}
\]

(18) shows the constraints imposed on gapping. The big difference between (15) and (18) is that there are paired elements sharing their HEAD and SEM and the latter elements are elided, except the peripheral elements [A] and [D]. They
are \([I_1]\) and \([I_2]\). Gapping happens when the shared non-peripheral lists \([I_1]\) and \([I_2]\) are resolved as non-empty.

Furthermore, he mentioned additional constraints, \(h_f_share\) and \(h_s_share\) as follows.

\[
(19) \quad h_f_share([I_1], [I_2]) \leftarrow ([I_1]=\emptyset \land [I_2]=\emptyset) \lor \]
\[
([I_1]=\emptyset \land [I_2]=\emptyset) \land h_f_share([L_1], [L_2])
\]

\[
(20) \quad h_s_share([I_1], [I_2]) \leftarrow ([I_1]=\emptyset \land [I_2]=\emptyset) \lor \]
\[
([I_1]=\emptyset \land [I_2]=\emptyset) \land h_s_share([L_1], [L_2])
\]

In (21), non-peripheral DOM list \([I_2]\) is not empty.

\[
(21) \quad \text{John likes caviar, and Mary, beans.}
\]

\[
[MTR | DOM \begin{bmatrix}
\{A1\} & \{L1\} & (John) & \{I1\} & \{likes\} & \{R1\} & (caviar) & \emptyset
\{C1\} \end{bmatrix} & \begin{bmatrix}
\{C1\} & \{L2\} & (Mary) & \{P2\} & \{beans\} & \{R2\} & \emptyset
\end{bmatrix}
\]

\[
[UTRS \begin{bmatrix}
\{DOM \{A1\} \cup \{L1\} (John) \cup \{I1\} (likes) \cup \{R1\} (caviar) \cup \emptyset
\{C1\} \end{bmatrix} & \begin{bmatrix}
\{DOM \{C1\} \cup \{L2\} (Mary) \cup \{P2\} (beans) \cup \{R2\} \cup \emptyset
\end{bmatrix}
\end{bmatrix}
\]

A larger gap can be represented as follows;

\[
(22) \quad \text{Mia can help me today, and Jess, tomorrow.}
\]

\[
[I_2] = \langle [\text{Jess}] \rangle, \quad [L_2] = \langle [\text{can}], [\text{help}], [\text{me}] \rangle, \quad [R_2] = \langle [\text{tomorrow}] \rangle
\]

In (22), overlapping elements can, help, me in \([I_2]\) can be elided.

(22) is sufficient for explaining continuous gapping. However, Jackendoff (1971) and others points out that there are another kind of gapping – discontinuous gapping as in (23).

\[
(23) \quad a. \quad \text{John kissed Susan at the party, and Peter, Mary.}
\]
b. Dexter wants Watford to win, and Warren, Ipswich.
c. Peter took Susan home, and John, Wendy.

He modifies his first schema to account for discontinuous gapping by introducing the shuffle ‘◦’ operator at the right periphery of the internal sub-sets.

\[
\text{(24) } \text{cnj-cx } \Rightarrow \\
\begin{align*}
\text{MTR} & \quad \text{DOM} [A_1 : [L_1 : [D_1] : [D_2]]] \\
\text{SYN} & \quad \text{DOM} [C : [L_1 : [D_1] : [D_2]]] \\
\text{CRD} & \quad \text{DOM} [C : [L_1 : [D_1] : [D_2]]] \\
\text{DTRSH} & \quad \text{DOM} [C : [L_1 : [D_1] : [D_2]]] \\
\end{align*}
\]

\[\wedge \text{h.f.shares}(A_1, A_2) \wedge \text{h.f.shares}(D_1, D_2) \]
\[\wedge \text{h.s.shares}(L_1, L_2) \wedge \text{h.s.shares}(D_1, D_2) \]
\[\wedge \text{L_1} \neq \text{ne-list} \Rightarrow [\text{SYN} [\text{HD verb, MRK none}]] \in [L_2] \]

3. Proposal

3.1. Additional constraints on pseudogapping

Chaves (2005) already pointed out the problems of Beavers and Sag (2004). His alternative is to add the new non-peripheral list \[L_2\] that consists of reduplicated elements, which can be elided. His gapping schema (18) has no specific constraint - what can be the remnants? Thus, his proposal incorrectly predicts that sentences below are all grammatical.

\[(25) \text{a. } * \text{You feel relieved, but I do jubilant} \]
\[\text{b. } * \text{Rona sounds annoyed, and Sue did frustrated. } \quad \text{(Lasnik, 1999)} \]

These adjectival remnants can be ruled out through Jayaseelan(1990) and Lasnik's (1999) analysis. They all assume NP movement - HNPS and OS. However, \textit{relieved} and \textit{jubilant} are not nouns but adjectives so that they do not undergo HNPS and OS. Adjectives, the complements of verb are elided along with the vP ellipsis.
Without any constraint on the part of speech, it is not enough to apply the
gapping schema to pseudogapping. The fact that AP cannot be the only remnant
in pseudogapping constructions is also supported by the examples below.

(27) a. ??I made John happy and she did make Mike upset
 b. *I made John happy but she did make John upset.

Roughly, the definition of pseudogapping is generally assumed to be the deletion
of vP except an auxiliary verb and a argument or arguments. However, the
definition of pseudogapping should be more specific in that not all kinds of
arguments can be the remnant of vP-ellipsis as shown above.

According to Lasnik (1999), one of the pseudogapping puzzles which the
gapping schema cannot explain but we have to solve is the difference between
(28a, b) and (28c, d). In (28a) and (28b), prepositions that two adjuncts have in
common are elided as the gapping schema predicts. However, in (28c) and (28d),
prepositions are not elided even though they are in the same context.

(28) a. John speaks to Bill and Mary should speak to Susan.
 b. John talked about linguistics and Mary will talk about philosophy.
 c. *John swam beside Bill and Mary did swim beside Susan.
 d. *John stood near Bill and Mary should stood near Susan.

(Lasnik, 1999)

The examples in (28) show that the object of some prepositions can be a remnant
of pseudogapping, while that of others cannot. This distinction is closely related
to two different kinds of prepositions. One is argument-marking prepositions
and the other is predicative prepositions. The former does not contribute
anything to the meaning of sentences semantically, i.e. its RESTR(ICTION) is
empty, sharing the values of MODE and INDEX with those of its complement. And the latter has its own MODE value, INDEX value, and non-empty RESTR. Thus, this indicates that argument-marking prepositions are transparent and can be elided with verb, while predicative prepositions are non-transparent and cannot be elided with verb. Examples in (29) and (30), however, show that not all argument-marking prepositions are deleted under the pseudogapping environment.

(29) a. Jack will laugh at John and Mary will laugh at Dan.
 b. *Jack will laugh at John and Mary will laugh at Dan.

(30) a. Nate would depend on Jennifer and Lee might depend on Kim.
 b. *Nate would depend on Jennifer and Lee might depend on Kim.

To solve this problem clearly, a new additional feature distinguishing the two groups is needed. I will call it SEP(arable) feature. A preposition with [SEP-] should be included in the same domain object with its complement NP, while a proposition with [SEP+] does not have to. That is, a preposition with [SEP+] and its complement NP can be located in the different domain objects. All predicative prepositions have [SEP-], while some argument-marking prepositions have [SEP+] and the others have [SEP-].

When argument-marking prepositions with [SEP-] are paired in the coordinated clause, they cannot be elided in pseudogapping constructions. This constraint will be specified in the new pseudo-gapping schema.

3.2. Pseudogapping schema

Pseudogapping is more complex and more peculiar than gapping due to additional and specific constraints to explain the phenomena. By adopting the DOM list device, we can solve the problem, arbitrariness, because the daughter's DOM lists need not realize in the mother's node, when there are reduplicated elements in clause. The problem is how we can rule out the case where pseudogapping sentences are ungrammatical even when only reduplicated elements are elided, such as (25) and (27b).

This problem can be solved by dividing \([R_e, \quad R_{e'}] \) into two DOM lists, \([R_2, \quad R_3] \). Elements which can be included in \([R_2] \) are NPs and PPs whose heads have
Meanwhile, APs are not included in R_v, but R_v'. Adverbs make the problem worse because of their position. It is well known that there are two kinds of adverbs – high adverbs and low adverbs. High adverbs can be attached to positions higher than vP, while low adverbs within vP. Sentences in (32) include both a high verb and a low verb and the high verb cannot be elided.

\[(31)\]
\[a. \ \text{I gave John a book yesterday, fortunately, and Mary did give Tim a pen yesterday, fortunately.} \]
\[b. \ *\text{I gave John a book yesterday, fortunately, and Mary did give Tim a pen yesterday, fortunately.}\]

(31a) indicates that the L_2, I_3, R_2, P_3 are not sufficient to account for complex sentences. In (31), yesterday is supposed to belong to P_3. However, fortunately needs a new DOM list, because R_v' includes only Tim a pen. I call a new list for fortunately Q_1, containing overlapping elements, which should not be elided because fortunately is not located within vP. In order to distinguish high adverbs from other adverbs, I will suggest high adverbs have INC (identical adverbs) feature and the others do not. Then only elements which have INC feature can be located in Q_1 and Q_2, which can be either empty or non-empty and can occur anywhere out of vP.

All constraints mentioned above put together, pseudogapping in coordination structure can be described as follows;

\[(32)\] cnf-cx \[\Rightarrow\]

\[
\begin{align*}
&MTR \quad \text{DOM} \quad A_3 [\circ L_1 [\circ L_2 [\circ R_v [\circ R_v'] [\circ Q_3 [\circ C [\circ L_3 [\circ R_v [\circ R_v'] [\circ ne - list \circ D_3 [\circ Q_3 [\circ Q_1 \circ]]]]]]]]]]])
\end{align*}
\[
\begin{align*}
&\text{SYN} \quad [0]
\end{align*}
\[
\begin{align*}
&\text{CRD} \quad [0]
\end{align*}
\[
\begin{align*}
&MTR \quad \text{DOM} \quad A_3 [\circ L_1 [\circ L_2 [\circ R_v [\circ R_v'] [\circ list \circ [P_3] [\circ ne - list \circ D_3 [\circ Q_3 [\circ Q_1 \circ]]]]]]])
\end{align*}
\[
\begin{align*}
&\text{SYN} \quad [0]
\end{align*}
\[
\begin{align*}
&\text{CRD} \quad [0]
\end{align*}
\]

\[\land h_f _share \{F_3, F_4\} \quad \land h_f _share \{D_3, D_4\} \land h_s _share \{F_4, D_4\} \land h_s _share \{P_3, P_4\}
\]

\[\land R_v^* \quad \exists \quad (\text{NP PP[HD[SEP-_1]]} \land R_v^* = \text{AP} \circ D_3 [\circ P_3] \quad \exists \quad P[\text{SEP-_1]}\quad \land Q_1, Q_2 = \{\text{INC+}\} \land R_v^* \quad \land ne _list
\]

\[\Rightarrow \quad \text{[SYN]} [\text{HD[FORM base], MRK none}] \in D_3\]
(32) contains the new constraint \(R' \rightarrow R'' \) which indicates \(R'' \) can be remnant only when \(R' \) is remnant. That is, this prevents (27b) - AP is a unique remnant - from being predicted grammatical and allows (27a) to be judged as grammatical sentence, even though it sounds awkward.

(32) is within the limit of the coordination structures. However, pseudogapping also occurs in subordination or comparative structures, as in (2) and (3). Thus, in order to cover as many as phenomena, the pseudogapping schema which can be applied to any structure is needed. It can be represented as follows.

\[
(33) \text{pseudogapping-ex} \Rightarrow
\]

If \(E \) in first conjunct is occupied with subordinate conjunctor, it is pseudogapping in the subordinate construction. Furthermore, \textit{than} can be located in \(E \) in the second conjunct, when it is pseudogapping in the comparative construction.

4. Unsolved Problems

Pseudogapping is a peculiar phenomenon related to semantics as well as syntax. Consequently we have to investigate how people can process the sentences with pseudogapping. Furthermore, we cannot understand this phenomenon, ignoring the context, or pragmatics because pseudogapping can occur in the sentences standing alone in certain context in discourse as in (34).
(34) a. A: Is she suing the hospital?
 B: She is *suing* the doctor.

b. A: Has he sold his collection yet?
 B: He has *sold* some of his paintings; I'm not sure about the rest.
 (Halliday and Hasan, 1973)

c. A: Gee, I've never seen you on campus before.
 B: Yea! Neither have I *seen* you.
 (Lasnik, 1973)

Sentences above cannot be explained with the pseudogapping schema I suggested in the previous section because Bs have [CONJ –] and elided elements are not specified in the same sentences.

5. Conclusion

In this paper, I proposed a new pseudogapping schema based on the gapping schema mentioned in Chaves (2005). The new schema can capture the insufficient aspect by dividing the DOM list \(R_e \) into \(R_e^l \) and \(R_e^r \). In addition, by introducing SEP feature, prepositions which can be contained in \(L_e \) are separated from those which cannot be contained in \(L_e \). Furthermore, a new DOM list \(Q \) is introduced for high adverbs that have INC feature.

However, as I mentioned in the previous section, semantic and pragmatic analysis is mandatory for the complete understanding of pseudogapping.

References

ABSTRACT

On Pseudogapping in HPSG

Dong-woo Park

This study investigates the constraints imposed on the pseudogapping in the framework of Head-Driven Phrase Structure Grammar (HPSG). Based on the existing schema to account for coordination and gapping, a new pseudogapping schema in coordination structures is proposed in this paper. In the process of capturing the constraints, new DOM lists are added and an existing DOM list is divided into two DOM lists depending on the feature of elements in each domain. Furthermore, new features SEP and INC are introduced. SEP is used for distinguishing prepositions which should be located in the same domain with the following NPs from those which can be separated from the following NPs. INC feature determines whether overlapping adverbs are in non-empty lists or not. Pseudogapping occurs not only in coordination structures, but in comparative or subordination structures. Thus, this paper introduces a pseudogapping schema that can be applied to all structures mentioned above.

Keywords DOM lists, SEP feature, INC feature, pseudogapping schema.