단일 주파수 일방향 파동방정식을 이용한 종합 전 역 시간 심도 구조보정

윤광진①, 정미경①, 서정희①, 신창수①, 양승진②, 고승원②, 유해수③, 정재경③

Prestack Reverse Time Depth Migration Using Monochromatic One-way Wave Equation

Yoon Kwang Jin, Jang Mi Kyung, Suh Jung Hee, Shin Chang Soo, Yang Sung Jin, Ko Seung Won, Yoo Hae Soo and Jang Jae Kyung

요약: 탄성파 탐사자료의 구조보정에는 주로 Kirchhoff 및 역시간 구조보정이 이용되고 있다. 파동방정식을 이용한 역시간 구조보정에는 양방향 및 일방향 파동방정식이 이용된다. 일방향 파동방정식을 사용한 점근법은 해향 파동장 외삽연산자를 근사하게 계산하는 방식으로, 양방향 파동방정식을 이용한 방법에 비해, 계산량이 적고 작게 키프터 주기장치로 작업이 가능하다. 본 논문에서는 일방향 파동방정식을 이용하여 종합전 역시간 구조보정을 수행하였다. 주파수-공간영역에서 음직인 파동장의 전파 및 전측 파동장의 역시간 전파에 단일파수 일방향 파동방정식을 이용하였으며, 이 두 파동장의 영 영역 상호관련을 계산하여 구조보정하였다. 구조보정에는 초범렬 슈퍼컴퓨터(MPP, Massively Parallel Processors) CRAYT3E가 사용되었으며, 이 작업을 통해 알고리즘의 쉽게 병렬화가 가능하여 효율적으로 구조보정에 이용될 수 있음을 확인하였다.

주요어: 종합 전 구조보정, 역 시간, 일 방향 파동방정식, 단일주파수

Abstract: In the seismic migration, Kirchhoff and reverse time migration are used in general. In the reverse time migration using wave equation, two-way and one-way wave equation are applied. The approach of one-way wave equation uses approximately computed downward continuation extrapolator, it need less amounts of calculations and core memory in compared to that of two-way wave equation. In this paper, we applied one-way wave equation to pre-stack reverse time migration. In the frequency-wavenumber domain, forward propagation of source wavefield and back propagation of measured wavefield were executed by using monochromatic one-way wave equation, and zero-lag cross correlation of two wavefield resulted in the image of subsurface. We had implemented prestack migration on a massively parallel processors (MPP) CRAYT3E, and knew the algorithm studied here is efficiently applied to the prestack migration due to its suitability for parallelization.

Keywords: Prestack migration, Reverse time, One-way wave equation, Monochromatic

서론

해향연속을 이용한 구조보정(Claerbout, 1985)은 스킬라 파동방정식을 일방향 좌변방정식으로 변환시켜 해향연속을 통해 구조보정을 하는 방법이다. 이 때 종합단면도는 ≠0에서 지질경계면에 따라 단위폭격함수를 주고 지표에서 측정한상향 파동장(Claraebout and Doherty, 1972). 해향연속을 이용한 구조보정은 이러한 기본 개념 하에 해향연속 알고리즘으로 자료 탐사자료의 파동장을 외삽하여 ≠0 일 때의 초기조건을 구하는 것이다.

*2000년 5월 20일 접수
1) 서울대학교 지구환경시스템공학부
2) 한국대학교 지구환경공학전공학부
3) 한국해양연구소 지구물리부

70
역 시간 구조보정(reverse time migration)은 공동 반파류 모음 자료에 대해서 실시할 수 있다. 본 연구에서도 단일주파수 일방향 파동방정식(monochromatic one-way wave equation)을 적용한 하향 연속 알고리즘을 통해 중간 전 역 시간 구조 보정을 실시하였다. 본 연구에서 구조보정 전 시간 구조보정 방 법에서는, 지하의 물리(속도)에 대한 반미분파동장(partial derivative wavefield)와 측정자료와의 영지면 상호장관(zero-lag cross correlation)을 계산하여 영향을 시도하였다. 지하에 걸의 물성에 대한 반미분파동장을 직접 계산하는데는 많은 계산시간이 필요하며, 파동방정식의 adjoint 특성을 이용하여 반미분파동장과 측정자료간의 상호장관을 간접적으로 계산하였다. 그리고 이 상호장관을 구하는데 있어서 가상음원(virtual source)의 계산과 측정자료의 역 파편에는 단일주파수 일방향 파동방정식을 적용하였다. 일방향 파동방정식을 이용한 역 시간 구조보정은 두 가지 장점이 있다. (1) 반미분파동장을 간접적으로 구할 때 여부 신사파편만을 계산할 수 있다. 이는 단일 반 사파편이 임의의 격자점의 반미분파동장과 오해의 일치하지 않으면 양 방향 파동방정식을 이용한 역 시간 구조보정보다 이중영상을 효과적으로 제거할 수 있다. (2) 일방향 파동방정 식을 이용하기 때문에 양 방향 파동방정식을 이용한 경우보다 빠른 재구격장의 응용과 계산량이 현저하게 줄어든다. 본 연구에서는, 각 CPU가 128 Mbytes의 주기적역장치를 갖고 있는 CRAY T3E를 이용하여 작은 비용으로 신속한 구조보정을 수행할 수 있었다.

역 시간 구조보정의 이론적 배경

Clarerbell(1976)에 의한 제안된 영역화 조건은 지질모형의 각 격자점에서 맨달함수와 관측자료의 영향연속 파동장과의 영 지면 상호장관으로 주파수영역에서는 다음과 같이 표시된다.

\[i(x, z) = \int_{-\infty}^{\infty} D(x, z, \omega) d\omega \quad \text{(1)} \]

여기서 \(D(x, z, \omega) \)는 지표에서 기록된 파동장의 영향연속 파동장, \(i \)는 거리, \(x \)는 깊이, \(\omega \)는 각주파수이며, \(K(x, z) \)는 지하 영상이다. \(K \)의 순열의 과적합함수는 \(1(\Delta t) \)의 주가에 변환과 \(D(x, z, \omega) \)의 곱이다. 이처럼 Clarerbell의 영역화 조건은 맨달함수와 영향연속 파동장들과의 영 지면 상호장관으로 정의된다. 역시간 구조보정은 점음원(point source)에 의한 저하계열의 물성에 대한 반미분파동장과 지표관측자료간의 영지면 상호장관으로 다음과 같이 정의된다(Whitmore and Linses, 1986).

\[\frac{dP \omega}{d\omega} = \int_{0}^{\infty} \int_{0}^{\infty} \frac{d(x, z = 0, t)}{d\omega} d(x, z = 0, t) dx dt \quad \text{(2)} \]

여기서 \(\frac{dP \omega}{d\omega} \)는 \(\text{3} \)계차점에서의 저하의 영상, \(\frac{d(x, z = 0, t)}{d\omega} \)는 저하계열의 물성 \(p \)에 대한 반미분파동장(Shin, 1988, 정성형 등, 1997), \(d(x, z = 0, t) \)는 지표의 측정단면파지로, \(d(x, z = 0, t) \)

는 지표에서의 점음원에 의한 파동장이다. 역시간 구조보정은 (2)식에서처럼 반미분파동장을 직접 구하여 영향을 할 수도 있으나(Gauss-Newton 구조보정(신형식 등, 1997)), 반미분파동장의 직각적인 계산은 많은 컴퓨터 계산시간을 요구한다. 반 면, 파동방정식의 adjoint 성질을 이용하면 반미분파동장과 관측자료의 상호장관은 가상음원과 역 전파된 관측자료 파동장 의 상호장관으로 표현된다(Mora, 1987). 즉, 역시간 구조보정 은 반미분파동장과 측정단면파지로와의 영지면 상호장관간 간접적으로 계산하여 영향을 줄인다. 이는 다음의 파동과 같이 상호장관을 계산한다.

\[\frac{dP \omega}{d\omega} \]

여기서 \(n \)은 지표면의 격자수, \(\frac{d(x, z, \omega)}{d\omega} \) 및 \(d(x, z) \)는 지표면에서 구해진 반미분파동장과 측정단면파지로이다. 초기화과정이 정확한 경우 반미분파동장은 모든 격자점에서 계산된다. 전체 격자 수를 \(N \)로 할 때, (3)식의 우측 측정단 면파지로 벡터에 \(t \cdot N \)-개의 \(0 \)을 더하여 주변 다음과 같이 표시된다.

\[\frac{d(x, z)}{d\omega} \quad \text{(4)} \]

(4)식을 이용한 영지면 상호장관은 파동방정식의 adjoint 특 성을 이용하면 다음과 같이 표시된다.

\[\left[\begin{array}{c} \frac{d(x, z)}{d\omega} \\ \vdots \\ \frac{d(x, z)}{d\omega} \end{array} \right] = \left[\begin{array}{c} \frac{d(x, z)}{d\omega} \\ \vdots \\ \frac{d(x, z)}{d\omega} \end{array} \right] \frac{1}{N} \left[\begin{array}{c} s_1 \\ \vdots \\ s_N \end{array} \right] \frac{d(x, z)}{d\omega} \quad \text{(5)} \]

\[\frac{d(x, z)}{d\omega} \]

여기서 \(S \)는 \(\text{3} \)계차점에서의 저하의 영상, \(\frac{d(x, z = 0, t)}{d\omega} \)는 저하계열의 물성 \(p \)에 대한 반미분파동장(Shin, 1988, 정성형 등, 1997), \(d(x, z = 0, t) \)는 지표의 측정단면파지로, \(d(x, z = 0, t) \)
여기서 $\sqrt{\gamma}$은 γ개의 점에서의 수도 및 밀도에 대한 편미분을 계산할 때 필요한 γ개의 점에서의 가중변수이다. 일반적으로 유한차분법을 이용한 경우(밀도에 대한 편미분을 대신한 경우), γ개의 점에서의 이산함수만 0이 아니고 다른 γ개의 점에서의 가중변수들은 0이 된다.

일방향 파동방정식을 이용한 허영언역

본 연구에서 적용한 일방향 파동방정식을 이용한 정량화하는 가중변수를 결정할 수 없고, 단순변수를 제거할 수 없으므로 제거할 수 있다. 스크라 파동방정식을 이용하면 메질의 공간적인 변화를 쉽게 다룰 수 있고 이를 이용한 구조보정이 정확하다(Hemn, 1978; Kosloff와 Byass, 1983), 그러나, 스크라와 evanescent waves 그리고 초기조건 문제 등이 스크라 파동방정식을 제거하는 영향을 예상하는 여러모로 주고 있어서 대부분의 구조보정은 Claerbout가 소개한 paraxial 파동방정식(single-square-root equation 또는 parabolic wave equation)을 이용하고 있다(Claerbout, 1985). Paraxial 방정식은 양방향 파동방정식을 구하기에 변화한다. 따라서 변환에 의한 변화는 메개변수(속도, 밀도 등)의 공간적인 변화를 다룰 수 있다. 따라서 공간적으로 변화하는 메개변수를 다룰 수 없어서 일방향 방정식을 적용할 수 있다. 즉, f차원에서의 paraxial 방정식은 다음과 같은 방정식을 구한 후 ∂k와 ∂z를 ∂k_1와 ∂k_2로 대치하여 공간변역의 편미분 방정식을 구한 다음 이를 유한차분법을 이용해 해를 구한다.(장미경, 1999).

다음은 이차원 스크라 파동방정식이다.

\[
\frac{\partial^2 P(x,t)}{\partial x^2} + \frac{\partial^2 P(x,t)}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 P(x,t)}{\partial t^2}
\]

(6)식의 $\exp(ik_x x + ik_z z - i\omega t)$를 (6)식에 대입하면 다음의 본질성을 구할 수 있다.

\[
k_x^2 + k_z^2 = \frac{\omega^2}{v^2}
\]

(7)식으로부터 일방향 파동방정식의 본질관계식을 구할 수 있는데 그 중에서 하강가구가 입방을 취하면

\[
k_z = \frac{\omega}{v} \sqrt{1 - \frac{k_x^2}{\omega^2}}
\]

(8)식이다. 따라서 $i\omega$는 $\frac{\partial}{\partial z}$에 해당하므로 다음과 같은 파동장 외삽 변수를 구할 수 있다.

\[
\frac{\partial}{\partial z} P(\alpha, k_x, z) = \frac{i\omega}{v} \sqrt{1 - \frac{k_x^2}{\omega^2}} P(\alpha, k_x, z)
\]

(9)식은 $\gamma = \frac{\alpha}{\omega}$로 속도가 급한 원자수수의 경우이다. ω를 ω_1로 대치하여 (9)식은 공간하강으로 변환하는 변수와의 관계를 구할 수 있다. 이 구간은 다른 형태로 가지거나 다르게 사용할 수 있다. 이 구간의 근사법은 Taylor 급수 계산방식과 밀 분수 계급(continued fraction expansion: Claerbout, 1985; Yilmaz, 1987)가 있으며 분수 근사법은 다음과 같은 식으로 표현된다. (Lee와 Suh, 1985).

\[
R = \sqrt{1 - X^2}
\]

(10)식의 γ차 분수근사함은 $R_{n+1} = 1 - \frac{\gamma^2}{1 + R_{n}}$의 분수관계식으로 주어지고, 폭주수 근사법의 경우 다음과 같은 식으로 표현될 수 있다.(Lee와 Suh, 1985).

\[
R_{2n} = 1 - \sum_{i=1}^{n} \frac{\alpha_i^2}{1 - \beta_i^2}
\]

(11)식의 n차 분수근사함은 $R_{n+1} = 1 - \frac{\gamma^2}{1 + R_{n}}$의 분수관계식으로 주어지고, 폭주수 근사법의 경우 다음과 같은 식으로 표현될 수 있다.(Lee와 Suh, 1985).

<table>
<thead>
<tr>
<th>order</th>
<th>degree of accuracy</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>65</td>
<td>0.478242060</td>
<td>0.376369527</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>0.040315157</td>
<td>0.873981642</td>
</tr>
<tr>
<td>6</td>
<td>87</td>
<td>0.457289566</td>
<td>0.222691983</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>0.004210420</td>
<td>0.972926132</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>0.000523275</td>
<td>0.994065088</td>
</tr>
<tr>
<td>12</td>
<td>90</td>
<td>0.014853510</td>
<td>0.919432661</td>
</tr>
<tr>
<td>14</td>
<td>90</td>
<td>0.117920088</td>
<td>0.614520676</td>
</tr>
<tr>
<td>16</td>
<td>90</td>
<td>0.367013245</td>
<td>0.105756624</td>
</tr>
<tr>
<td>18</td>
<td>90</td>
<td>0.000153427</td>
<td>0.997370236</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>0.004172967</td>
<td>0.964827992</td>
</tr>
<tr>
<td>22</td>
<td>90</td>
<td>0.033869918</td>
<td>0.824918565</td>
</tr>
<tr>
<td>24</td>
<td>90</td>
<td>0.143798076</td>
<td>0.483340757</td>
</tr>
<tr>
<td>26</td>
<td>90</td>
<td>0.318013812</td>
<td>0.073588213</td>
</tr>
</tbody>
</table>

Table 1. 최적화된 분수근사법 일방향 파동방정식의 계수들(Lee와 Suh, 1985)
Lee and Suh(1985)는 최소자승법을 이용해 (10)식과 (11)식의 오차를 최소화 하는 계수들을 계산하였으며, 그 결과에 따르면 (11)식에 대한 10차 항까지의 각각의 경사각과 그레프의 계수는 Table 1과 같다. 속도가 깊이가 거리에 따라 변하는 매질에 대해 파동장 지하하천사를 구할 경우에는 본수근사식으로 (9)식의 계급근을 근사시킨 후에 \((i_k)^2 = \frac{\partial^2}{\partial x^2}\) 로 대치하여 공간주파수 영역에서 공간영역으로 변환하고, 이 변환된 식에 유한차분법을 적용한다. 본 연구에서는 Table 1의 계수들을 이용하여 속도의 수직 및 수평적 변화를 허용하는 65\(^{\circ}\) 근사 파동 장 지하하천사를 구하고, 이를 이용한 허프먼측 알고리즘을 통해 영상화를 시행하였다.

Fig. 1. Two dimensional velocity model used to generate synthetic seismograms. Migration of synthetic data is implemented using this model.

Fig. 2. Monochromatic image at the frequency of 30 Hz of a shot gathered synthetic seismogram.

Fig. 3. Depth migrated image of a shot gathered synthetic seismogram.

Fig. 4. Prestack depth migrated image of synthetic seismograms.

Fig. 5. Monochromatic image at the frequency of 30 Hz of a shot gathered seismogram.

Examples

단일주파수 일정장 파동방정식을 이용한 영 역 시간 심도 구조보정

단일주파수 일정장 파동방정식을 이용한 역 시간 구조보정은 인공합성자료에 대해 적용해 보았다. Fig. 1의 2차원 모델에 대하여 주파수영역 유한요소법 파동방정식 모델링을 이용하여 인공합성자료를 작성하였다. 구조보정에 사용한 속도모델은 Fig. 1의 모델을 이용하였다. Fig. 2는 한 음원 모음 자료를 30 Hz 단일 주파수를 사용하여 심도 영상화 한 것이다. Fig. 3은 0-50 Hz의 주파수에 대해 Fig. 2와 같은 각 주파수의 영상을 구하고 전체 영상을 얻어 낸 것이다. Fig. 4는 전체 341개 음원모음 자료의 영상을 구한 최종 심도 단면도이다. Fig. 1의 구조가 잘 나타나고 있음을 알 수 있다.

다음은 대부분 단면구조 자료를 구조보정한 결과들이다. 구조보정에는 간단한 수평 다중구조 모델을 이용하였다. Fig. 5은 한 음원모음 자료를 30 Hz 단일 주파수를 사용하여 구조보정한 결과이다. Fig. 6은 한 음원 모음 자료에 대한 구조보정 결과이며, Fig. 7은 298개 음원을 사용한 영상단면도이다. 이 작
적은 CRAYT3E를 이용하였으며, 0-50 Hz의 주파수 대역에 대해 1/4 Hz 간격으로 영상을 수행하였다. 한 음원 모음 자료를 구조보정하는데 약 31분의 CPU 시간이 소요되었고, 16개의 CPU를 이용하여 작업하였을 때, 7시간 정도가 소요되었다.

결론

파동방정식을 이용한 역 시간 구조보정은 급경사나 복잡한 구조에 대해 정확한 영상을 구할 수 있지만 많은 계산비용을 필요로 한다. 단일 주파수 일 방향 파동방정식을 이용하여 역 시간 구조보정 알고리즘을 모형 및 현장자료에 적용해 본 결과 밀교한 주 기역장치 및 보조기역장치가 대폭 감소되었다. 또한 음원 또는 주파수 별로 쉽게 병렬화가 가능하여 국내외 서 가동중인 CRAYT3E를 이용하여 효과적인 작업을 할 수 있었다. 구조보정 단연도의 천부 영상을 향상시킬 수 있는 연구가 필요하다고 판단되나, 주 반사파 만을 고려하므로 단단반사파의 제거에는 효과적일 것으로 판단된다.

사 사

본 연구는 1998년 해양수산부의 해양수산연구개발사업중 배타적 경제수역 해양자원조사사업의 연구비 지원에 의해 이루어짐

참고문헌

장미경, 1999, 일 방향 파동방정식을 이용한 역 시간 구조보정: 석사학위논문, 서울대학교.
Whitmore, N. D., 1983, Iterative depth migration by backward