Roles of Monoamine Neurotransmitters in the Regulation of Hypothalamic-Pituitary-Adrenal Axis (HPA) (II) — Role of 5-Hydroxytryptamine (Serotonin) in Controlling the Circadian Rhythmicity of Corticosterone in Rat

Yoo Hun Suh and Chan Woong Park

Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110, Korea

INTRODUCTION

Corticotropin-releasing factor (CRF) secreted from hypothalamic neurosecretory cells (neuroendocrine transducer cells) stimulates the release of ACTH from the pituitary gland, which in turn activates the adrenal cortex and results in an elevation of circulating glucocorticoid hormones.

The hypothalamic neurosecretory cells are regulated through synaptic connections by signals from neurons using various neurotransmitters.

In recent years efforts have been directed toward and progress has been made in identifying some of the neurotransmitters that control the release of CRF.

Among them, monoaminergic neural systems in the hypothalamic control of pituitary function have been widely studied. Several lines of evidence suggest the existence of serotoninergic control, but the conclusions from studies on the possible role of serotonin in the regulation of hypothalamic-pituitary-adrenal (HPA) activity (circadian rhythm of corticosterone secretion, feedback sensitivity, and stress-responsiveness of the HPA system) are not in agreement.

* This study was supported from the Research Grants (RC-81-2) of Seoul National University College of Medicine.

The present experiments were designed to test whether using various different pharmacologic approaches to stimulate or eliminate the central serotoninergic system have any consistent effect on the circadian rhythmicity of the HPA system and to investigate whether a correlation exists between the concentrations of 5-HT in the rat brain and the concentrations of plasma corticosterone changed by administration of drugs affecting serotoninergic system.

MATERIALS AND METHODS

In all experiments male Sprague-Dawley rats (SNU animal house, Seoul, Korea) weighing 160~250g were used. Animals were housed five to a cage in a constant-temperature room (20~25°C) with a 12-h light cycle (lights on 7.00~19.00 hours) and given commercial rat chow and tap water ad libitum. Animals were allowed to acclimatize to the condition of a quiet laboratory for 1hr before experimental procedures were started. Great care was taken to minimize the disturbance to the animals during the transfer. Experiments were performed between 10h and 12h (morning study group) or 16 hr and 18hr (evening study group) each day.

Rats were killed by decapitation and blood collected from the severed neck blood vessels into heparinized tubes. Care was taken to ensure that the rats following in line did not view
the decapitation of the preceding animals.

Plasma corticosterone was estimated by the spectrofluorimetric method of Zanker and Bernstein (1958). Fluorimetric readings were made on an Perkin-Elmer Spectrophotofluorometer (Model 1000, England) at an excitation wavelength of 468 nm and an emission wavelength of 520 nm. Corticosterone standard was obtained from the Sigma Chemical Company Ltd (USA).

Brains were quickly removed and chilled and the hypothalamus dissected out. 5-hydroxytryptamine concentrations were measured in hypothalamus and the remainder whole brain by the spectrofluorimetric method of modified Curzon and Green (1970).

Drugs were dissolved in normal saline for injection except 5-methoxy-N,N-dimethyl tryptamine (5-MeODMT). 5 MeODMT was dissolved in absolute ethanol, then diluted with saline to a final ethanol concentration of 2% v/v. Control animals were injected with an equal volume of normal saline.

Drugs used were L-tryptophan (Sigma, Mo. U.S.A.), 5-hydroxytryptophan (5HTP, Sigma), Pargyline HCl (Sigma), Parachlorophenylalanine (PCPA, Sigma), 5-methoxy-N,N-dimethyltryptamine (5-MeODMT, Sigma), 5,7-dihydroxytryptamine (5,7-DHT, Sigma).

All drugs were injected intraperitoneally except for 5,7-DHT, which was injected stereotaxically into the lateral ventricle in a volume of 10 µl at a rate of 1 µl/min. The coordinate were 2 mm from the midline, 1 mm posterior to bregma and 3.5 mm below the skull surface.

All animals were killed 1 hr after injection of drug except for PCPA and 5,7-DHT. Rats were killed 24 hr after last dose of PCPA and 5,7-DHT was intraventricularly injected to rats, and the rats were killed 7 days after injection of 5,7 DHT. Statistical analysis was carried out using the student's t-test, one way analysis of variance and least squares linear regression.

RESULTS

1. **Effect of Serotonin precursor, L-tryptophan:**
L-tryptophan (100 mg/kg) caused a significant rise both in the morning plasma corticosterone levels (199%, P < 0.001) and in the hypothalamic serotonin contents (162%, P < 0.001). The effect of L-tryptophan was significantly potentiated by 1 hr prior injection of a irreversible monoamine oxidase inhibitor, pargyline (70 mg/kg) (Table 1, Fig. 1).

![Fig. 1. Effect of L-tryptophan, L-trypt.+Pargyline and PCPA on the morning plasma corticosterone levels. All the data are presented as an increase of plasma corticosterone above the resting level. Vertical bars represent 1 SEM. The number of determinations is given in parenthesis. **P < 0.01; ***P < 0.001.](image)

2. **Effect of Serotonin immediate precursor, 5-hydroxytryptophan (5-HTP):** 5-HTP (1 mg ~ 100 mg/kg) caused a dose-related elevation of morning plasma corticosterone and brain serotonin levels in intact rats (Fig. 3, Table 1, and Table 2). Also, 5-HTP (10 mg and 50 mg/kg) produced a large rise in the concentrations of evening corticosterone and brain serotonin (Table 2, Fig. 2).

3. **Effect of Serotonin synthesis inhibitor, p-chlorophenylalanine (PCPA):** p-chlorophenylalanine (300 mg/kg/day for 2 days) caused a marked depletion of morning and evening brain serotonin and raised the morning plasma corti-
Fig. 2. Effect of 5-HTP, PCPA, 5-MeODMT and 5,7-DHT on the evening plasma corticosterone levels. Vertical bars are 1 SEM. Parenthesis (No. of experiments). *Significantly different from saline control (**P < 0.01, ***P < 0.001). **Significantly different from sham-operated group (***P < 0.01). A: PCPA, B: PCPA + 5-MeODMT (50 mg/kg), C: PCPA + 5-HTP (100 mg/kg), D: 5-HTP (10 mg/kg), E: 5-HTP (50 mg/kg), F: 5-MeODMT (5 mg/kg), G: 5-MeODMT (10 mg/kg), H: Sham Operation, I: 5,7-DHT (100 µg).

corticosterone levels (191%, P < 0.001) and decreased the evening levels to 94% of control (Table 1, Table 2, Fig. 1, and Fig. 2). Fall in evening plasma corticosterone levels by PCPA was reversed by following administration of 5-HTP (100 mg/kg) and 5-methoxy-N,N-dimethyltryptamine (5 mg/kg) (Fig. 2).

Fig. 3. Log dose response curve for rise in morning plasma corticosterone levels after i.p. 5-HTP. Bars represent 1 SEM. The number of determinations is given in parenthesis. *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 4. Log dose response curve for rise in morning plasma corticosterone levels after i.p. 5-MeODMT. Bars represent 1 SEM. The number of determinations is given in parenthesis. **P < 0.01, ***P < 0.001.

4. Effect of direct Serotonin agonist, 5-methoxy-N,N-dimethyltryptamine (5-MeODMT): 5-MeODMT (1~15 mg/kg) produced a dose related elevation of morning plasma corticosterone levels (Fig. 4). Evening plasma corticosterone levels were increased by injection of 5-MeODMT (5 mg, 10 mg/kg, i.p.) (Fig. 2).

5. Effect of Serotonin neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT): 5,7-DHT (100 µg) lowered brain 5-HT contents and plasma corticosterone concentrations to a similar extent (about 20%).

6. Correlation between plasma corticosterone concentration and brain serotonin concentrations:

Fig. 5. Correlation between plasma corticosterone and hypothalamic 5-HT concentrations after administration of several drugs affecting 5-HT system. y = 11.006x + 16.989, r = 0.6125, p < 0.001.
Table 1. Morning brain 5-hydroxytryptamine contents after various treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of animals</th>
<th>5-HT levels, μg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hypothalamus</td>
</tr>
<tr>
<td>Saline control</td>
<td>10</td>
<td>0.976±0.048</td>
</tr>
<tr>
<td>L-tryptophan (100mg/kg)</td>
<td>8</td>
<td>1.583±0.141***</td>
</tr>
<tr>
<td>L-tryptophan+Pargyline (70mg/kg)</td>
<td>8</td>
<td>3.375±0.392***</td>
</tr>
<tr>
<td>5-HP, 1mg/kg</td>
<td>10</td>
<td>0.914±0.111</td>
</tr>
<tr>
<td>10mg/kg</td>
<td>8</td>
<td>1.478±0.134**</td>
</tr>
<tr>
<td>50mg/kg</td>
<td>10</td>
<td>2.080±0.211***</td>
</tr>
<tr>
<td>100mg/kg</td>
<td>8</td>
<td>2.360±0.172***</td>
</tr>
<tr>
<td>PCPA (300mg/kg)</td>
<td>8</td>
<td>0.262±0.027***</td>
</tr>
</tbody>
</table>

Rats were killed between 10:00 and 12:00. Values are mean±S.E.M. Significantly different from saline control: *P<0.05 **P<0.01 ***P<0.001

Table 2. Evening brain 5-HT contents

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of animals</th>
<th>5-HT levels μg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hypothalamus</td>
</tr>
<tr>
<td>Saline control</td>
<td>8</td>
<td>1.211±0.288</td>
</tr>
<tr>
<td>5-HP, 10mg/kg</td>
<td>7</td>
<td>1.132±0.101</td>
</tr>
<tr>
<td>50mg/kg</td>
<td>7</td>
<td>2.363±0.501*</td>
</tr>
<tr>
<td>PCPA, 300mg/kg</td>
<td>7</td>
<td>0.435±0.066***</td>
</tr>
<tr>
<td>+ 5-HP (100mg/kg)</td>
<td>7</td>
<td>1.100±0.121</td>
</tr>
<tr>
<td>Sham operated control</td>
<td>6</td>
<td>1.024±0.120</td>
</tr>
<tr>
<td>5,7-DHT</td>
<td>6</td>
<td>0.837±0.061**</td>
</tr>
</tbody>
</table>

Rats were sacrificed between 17:00~18:00. Values represent mean±S.E.M. Significantly different from saline control (*P<0.05 **P<0.01 ***P<0.001). Significantly different from sham-operated group (***P<0.001).

There was a moderate-positive correlation between plasma corticosterone concentrations and hypothalamic serotonin concentration changed by several serotonin drugs \((r=0.6125, p<0.001\); Fig. 5). As compared to this result, there was a weaker correlation between plasma corticosterone concentrations and remainder whole brain serotonin concentrations \((r=0.4955, p<0.001\); Fig. 6).

DISCUSSION

It is now firmly established that the hypothalamus is the focal point at which neural stim-
ulti converge to influence the secretion of ACTH, and the median eminence is regarded as the final common path through which information is transmitted to the anterior pituitary. The origins of the neurons which exert pharmacological effects on the CRF neurons are at present not defined although tracts inhibiting and stimulating ACTH release have been found ascending in the spinal cord and brain stem (Gann et al., 1978).

Considerable progress has been made in the past ten years on the elucidation of the role of neurotransmitters in regulating hypothalamo-pituitary-adrenal (HPA) function. But it is still uncertain which transmitters and which pathways play important regulatory roles. In the rat hypothalamus in vitro, secretion of CRF has been shown to be stimulated by acetylcholine and serotonin and inhibited by norepinephrine and 5-aminoacyluric acid (Buckingham and Hodges, 1977; Jones et al., 1976). Several lines of evidence suggest the existence of serotonergic control in vivo, but there is considerable controversy concerning the role of brain 5-HT in the regulation of HPA activity (circadian rhythmicity, feedback sensitivity and stress responsiveness).

However, other studies have led to the suggestion that there are inhibitory serotonergic neural pathways influencing HPA activity (Westermann et al., 1962; Vermes and Telegdy, 1972; Vernikos-Danelis et al., 1973; Berger et al., 1974; Vermes et al., 1974; Pavel et al., 1977).

At least two studies (Rotsztejn et al., 1977; Karteszi et al., 1981) found that neither the circadian rhythm of HPA activity nor the stimulated secretion of ACTH in response to adrenalectomy depended on central serotonergic control.

Thus conflicting results could be due in part to experiments carried out at different times of day and to using different species. Another likely possible explanation for the conflicting results is that peripheral administration of relatively nonspecific drugs affecting serotonergic system not only alters brain 5-HT, but also affects other neurotransmitter systems and whole body.

The aim of the present study was to elucidate one aspect of the central control of CRF-ACTH secretion, namely, does 5-hydroxytryptamine play an essential role in controlling the circadian rhythm of HPA system of rat.

Rats have a diurnal plasma corticosterone with a trough early in the morning and a peak in the late afternoon (Critchlow, 1963; Rinne and Sonninen, 1964; Lee et al., 1982). Our experiments were performed in the morning (low level) and in the late afternoon (peak level).

The only conditions known to be associated with alterations in the circadian periodicity of plasma corticosterone level are; prolonged reversal (Sharp et al., 1961) or alteration of the sleep-wake schedule (Orth et al., 1967); diffuse CNS disease (Perkoff et al., 1959) or focal hypothalamic-limbic system disease (Krieger and Krieger, 1966) and discrete hypothalamic lesions in animals (Golichich and Halberg, 1965; Slusher, 1964).

These observations suggest that the CNS plays a dominant role in determining this daily variation in plasma corticosteroid levels. The present study indicated that the rise in the brain 5-HT contents 1 hr after injection of serotonin precursors (L-tryptophan and 5-HTP) was accompanied by a rise in the plasma corticosterone.
concentrations and 5HTP (1~100mg/kg); caused a dose-related elevation whereas L-tryptophan (over 100mg/kg) caused a significant elevation of the concentrations of brain 5-HT and corticosterone. L-Tryptophan, in contrast to L-5HTP, would not lead to serotonin formation at sites that do not form serotonin physiologically. However, only a very small percentage of administered tryptophan is converted to serotonin and the degree of serotonin receptor stimulation attainable by giving L-tryptophan is less than that with 5HTP, and other nonspecific mechanisms may influence corticosterone secretion. Our results concerning the effect of 5HT precursors were supported by several studies (Okada et al., 1972; Popova et al., 1972; Fuller et al., 1976; Steiner and Graham-Smith, 1980) but in disagreement with Pavel et al., (1977) and Vernikos-Danellis (1980).

p-Chlorophenylalanine (PCPA) inhibits tryptophan hydroxylase irreversibly and lowers serotonin concentration in brain. Maximum depletion occurs within about 24 hrs and depletion persists for at least 1 week (Koe and Weissman, 1968). We observed that PCPA (300mg/kg/day for 2 days) treatment raised the morning corticosterone and decreased the evening levels, which may be opposite effect, and following treatment of 5HTP and 5-MeODMT prevented the decrease of evening levels. There have been numerous studies showing that PCPA abolishes or attenuates the normal diurnal rhythm of circulating corticosterone levels in rats (Scapagnini et al., 1971, 1972; Van Delft et al., 1973; Vernikos-Danellis et al., 1973; Rotsztejn et al., 1977). Szafarczyk et al., (1979) observed that PCPA treatment increased corticosterone while decreasing ACTH: this disparity suggests that this amino acid may influence corticosterone rhythmicity in ways other than preventing the usual physiologic signals to rhythmicity. De Schaeapdryver et al., (1969) Vernikos-Danellis et al., (1977) and Pavel et al., (1977) reported that PCPA caused adrenocortical activation. One possible explanation for these conflicting data is that PCPA has to be given at high doses to deplete serotonin and probably influences catecholamine, amino acid availability and other physiologic process (Vernikos-Danellis et al., 1973, 1977), 5-Methoxy-N,N-Dimethyltryptamine (5-MeODMT) are indole compounds structurally related to serotonin that are potent serotonin agonists and elevated plasma corticosterone levels in a dose-related fashion and prevented fall in the evening corticosterone concentration caused by PCPA treatment.

5,6- and 5,7-dihydroxytryptamine (DHT) are serotonin neurotoxins that result in very long-lasting depletion of brain serotonin and do not pass blood-brain barrier (Baumgarten et al., 1978). The present study showed that intraventricular injection of 5,7-dihydroxytryptamine lowered the evening corticosterone levels. Kepic et al. (1979) reported that i.v injection of 5,7-dihydroxytryptamine abolished the normal diurnal changes in plasma corticosterone in rats, although Kriger (1975) had found that injection of 5,6-DHT did not prevent diurnal rhythmicity of plasma corticoids in rats.

The results obtained in the present experiments demonstrate a direct positive correlation between the concentrations of hypothalamic 5-HT and plasma corticosterone caused by pharmacologically manipulating serotonin system.

Caution should be exercised in drawing absolute conclusions from any one of several data since the techniques used to manipulate brain 5-HT levels suffer from several disadvantages and in assuming that a single action of the drug was responsible for the observed effects (Vernikos-Danellis et al., 1977).

In conclusion, our present data strongly suggest that 5-HT is a key neurotransmitter involved in the regulation of the circadian
rhythmicity of HPA system.

SUMMARY

Various pharmacologic studies have supported a stimulatory role of brain serotonin neurons in the hypothalamic regulation of circadian rhythmicity of pituitary-adrenocortical system in rats. The serotonin precursors (L-tryptophan and L-5-hydroxytryptophan), direct acting serotonin agonist (5-Methoxy-N-N-dimethyltryptamine) and monoamine oxidase inhibitor (Pargyline) all elevate both morning and evening plasma corticosterone levels in rats. The elevation of plasma corticosterone by L-tryptophan (100mg/kg) was potentiated by monoamine oxidase inhibitor, pargyline (70mg/kg). The elevation of plasma corticosterone by 5-hydroxytryptophan and 5-methoxy-N-N-dimethyl tryptamine showed a dose-related fashion both in the morning and in the evening.

Serotonin synthesis inhibitor (P-chlorophenylalanine) and serotonin neurotoxin (5, 7-dihydroxytryptamine) caused a fall in plasma corticosterone level.

Daily injections of p-chlorophenylalanine (300mg/kg/day) for 2 days raised the morning low and prevented the evening rise in plasma corticosterone.

The evening rise in plasma corticosterone was restored by the injection of 5-hydroxytryptophan and 5-methoxy-N-N-dimethyltryptamine.

There was a positive correlation between the concentrations of serotonin in the hypothalamus and the concentrations of plasma corticosterone caused by various pharmacologic manipulation.

Thus, our studies suggested that brain serotonergic neurons may play an important role in the regulation of the diurnal rhythmicity of adrenocortical function.

==국문초록==

시상하부—غير하수체—부신계 조절에 대한 Monoamine 신경전달 물질의 역할에 관한 연구(II) —5-hydroxytryptamine(Serotonin)의 Corticosteroid 일주기 변동에 미치는 영향

서울대학교 의과대학 약리학교실
서유현, 박천용

CRF 분비를 조절하는 신경전달물질 중 특히 serotonin (5HT)의 역할에 대하여 많은 연구가 있었으나 아직 논란이 많이 일어나고 있다. 따라서 저자는 시상하부—며하수체—부신계 (hypothalamo-pituitary adrenal system; HPA)의 일주기변동에 미치는 serotonin (5-HT)의 역할을 연구하기 위하여 각종의 serotonin계를 변동시킬 수 있는 약물들을 투여하여 투여한 후 나타나는 결과를 분석 검토해 보았다.

1. Serotonin구문 투여인 L-tryptophan (100mg/kg)과 L-5-hydroxytryptophan (5HTP) (1-100mg/kg)은 투여하였을 때는 5-HT항암과 현장 corticosterone항암의 증가가 나타났으며, 특히 5HTP의 증가는 용량에 비례해서 증가되었다. 또한 L-tryptophan의 효과는 MAO호조 역제제의 pargyline (70mg/kg)의 투여에 의해서 현저히 상승되었다.

2. 5-HT (serotonin) 합성 역제제인 P-chlorophenylalanine (300mg/kg/day, 2일간 투여)을 투여하였을 때는 5-HT 항암의 상당한 감소가 나타났으며, 현장 corticosterone 항암은 오히려 증가되는 경향을 보였다. 저녁의 항암은 5HTP (100mg/kg) 혹은 5-methoxy-N-N-dimethyltryptamine (5mg/kg)을 투여 투여함으로써 방치되었으며 오히려 저녁의 증가가 나타났다.

3. 5-HT 수용체작용제인 5 Methoxy-N-N-dimethyltryptamine (1-15mg/kg)을 투여하였을 시 현장 corticosterone항암이 강화되는 경향을 보였다.

4. Serotonin 신경전달 5, 7-dihydroxytryptamine (5, 7-DHT, 100μg base)을 투여함으로써 투여한 후 현장 corticosterone항암의 감소가 나타났다.

5. 위의 serotonin계를 변동시키는 약물들을 투여한 후 나타나는 시상하부 serotonin 항암과 현장 corticosterone항암 사이에는 의의있는 순 상관관계를 보였 다 (r=0.6125, P<0.001, n=70). 그러나 시상하부를
REFERENCES

