Activation of Matrix Metalloproteinases

Forkhead Factor, FOXO3a, Induces Apoptosis of Endothelial Cells Through

Hae-Young Lee, Hyun-Jung You, Joo-Yun Won, Seock-Won Youn, Hyun-Jai Cho,
Kyung-Woo Park, Woong-Yang Park, Jeong-Sun Seo, Young-Bae Park, Kenneth
Walsh, Byung-Hee Oh and Hyo-Soo Kim

Arterioscler Thromb Vasc Biol 2008;28;302-308; originally published online Dec 6,
2007;
DOI: 10.1161/ATVBAHA.107.150664

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association.
7272 Greenville Avenue, Dallas, TX 75214
Copyright © 2008 American Heart Association. All rights reserved. Print ISSN: 1079-5642. Online
ISSN: 1524-4636

The online version of this article, along with updated information and services, is
located on the World Wide Web at:

http://atvb.ahajournals.org/cgi/content/full/28/2/302

Data Supplement (unedited) at:

http://atvb.ahajournals.org/cgi/content/full/ATVBAHA.107.150664/DC1
Forkhead Factor, FOXO3a, Induces Apoptosis of Endothelial Cells Through Activation of Matrix Metalloproteinases

Hae-Young Lee, Hyun-Jung You, Joo-Yun Won, Seock-Won Youn, Hyun-Jai Cho, Kyung-Woo Park, Woong-Yang Park, Jeong-Sun Seo, Young-Bae Park, Kenneth Walsh, Byung-Hee Oh, Hyo-Soo Kim

Background—The forkhead factor, FOXO3a, is known to induce apoptosis in endothelial cells (ECs). However, its effects on extracellular matrices (ECM), which are important in EC survival, remained unknown. Here, we evaluated the role of FOXO3a on EC-ECM interaction.

Methods and Results—Constitutively active FOXO3a was transduced to human umbilical vein endothelial cells by adenoviral vector (Ad-TM-FOXO3a). Ad-TM-FOXO3a transfection led to dehiscence of ECs from fibronectin-coated plates, resulting in anoikis, which was significantly reversed by matrix metalloproteinase (MMP) inhibitor, GM6001. FOXO3a increased the expression of MMP-3 (stromelysin-1) but decreased the expression of tissue inhibitors of metalloproteinases-1 (TIMP-1), which was associated with increased MMP enzymatic activity in zymography. Pathophysiologic conditions such as serum starvation or heat shock also induced activation of endogenous FOXO3a, leading to activation of MMP-3 and apoptosis, which was reversed by GM6001. Delivery of Ad-TM-FOXO3a to the intraluminal surface in vivo led to EC denudation, disrupted vascular integrity, and impaired endothelium-dependent vasorelaxation.

Conclusion—Activation of MMPs and possible ECM disruption represent novel mechanisms of FOXO3a-mediated apoptosis in ECs. (Arterioscler Thromb Vasc Biol. 2008;28:302-308)

Key Words: FOXO3a ■ MMP ■ endothelial cell ■ apoptosis
Cell Culture, Adenoviral Vectors, and siRNA
Four to six passage human umbilical vein endothelial cells (HUVECs; Clonetics) were seeded on 2% gelatin-coated (Sigma) culture plates and incubated in endothelial growth medium (EGM bullet kit, Clonetics) with 10% fetal bovine serum.

Cell Viability and Apoptosis Assay
Viability of HUVECs was quantified using tetrazolium salt, WST-1, as instructed by the manufacturer (Roche). Apoptosis after 24 hours of adenoviral vector transfection was determined by measuring the hypodiploid fragmented DNA content using fluorescence-activated-cell sorter (FACS) analysis.

Real-Time Polymerase Chain Reaction Analysis
Changes in RNA-expression of MMP-3 was determined by quantitative real-time polymerase chain reaction (PCR) as previously described.

Immunoblot Analysis
Immunoblot analysis was performed by modification of the procedures described previously.

Casein and Gelatin Zymography
Zymography was performed using a previously described method.

Immunofluorescent Staining
For immunofluorescent staining, HUVECs were cultured on fibronectin coated dishes.

Fibronectin Degradation Assay
The degradation of fibronectin by the supernatant from Ad-TM-FOXO3a–transfected HUVEC cultured dish was evaluated.

Cell Detachment Assay
HUVECs (1 × 10^4 cells per well) were seeded on each well of the fibronectin (5 μg/cm^2) precoated 96-well plates and incubated at 37°C for 6 hours to allow adhesion.

In Vivo Gene Delivery in Rabbit Carotid Arteries
In vivo gene delivery was performed in carotid arteries of New Zealand White rabbits as previously described to evaluate whether FOXO3a transduction induced EC denudation and functional derangement.

Histological Analysis of Endothelial Denudation
The harvested arterial segments were stained with Evans blue to identify the endothelium-demanded luminal surface.

Organ Chamber Analysis for Vascular Reactivity
Rings (4 mm long) from each carotid artery were used to assess vascular reactivity. Rings were connected to isometric force displacement transducers (Grass Instruments) and suspended in organ chambers as previously described.

Statistical Analysis
All data are expressed as mean ± SD

Results
FOXO3a Induces Detachment of HUVECs from Matrix, Leading to Anoikis
HUVECs were infected by either Ad-GFP or Ad-TM-FOXO3a in the presence of serum and were harvested 24 hours thereafter. We found that Ad-TM-FOXO3a-transfected HUVECs showed significant detachment from the culture dish (Figure 1A). Survival of HUVECs was also found to decrease using a WST-1 assay (Figure 1B). Interestingly, Ad-TM-FOXO3a-transfected HUVECs were found to lose contact with plates as well as with neighboring cells at early stages after adenoviral transfection and before the appearance of other morphological changes that are associated with apoptosis (Figure 1C).

From these observations, we presumed that the activation of FOXO3a might disrupt cell-to-cell and cell-to-ECM adhesive interactions, leading to apoptosis. We also presumed that MMP activation might play a role in this process, because in microarray experiments comparing Ad-TM-FOXO3a–transfected HUVECs with Ad-GFP, the MMP-3 gene was one of the most robustly upregulated genes after FOXO3a-transduction, whereas TIMP-1 gene expression was found suppressed (data not shown).

To confirm whether MMPs play a main role in EC detachment after FOXO3a-transduction, we pretreated HUVECs with GM6001, a general MMP inhibitor, which markedly decreased EC detachment from the plate as well as from the neighboring cells (Figure 1D and 1E). Furthermore, FACS analysis for hypodiploid DNA showed about 50% reduction of apoptotic fraction in the presence of GM6001 (Figure 1F), suggesting that MMP activation might induce anoikis in FOXO3a-transduced HUVECs.

FOXO3a Induces MMP-3 in Endothelial Cells
To confirm whether the endothelial cell detachment after FOXO3a overexpression was mediated by MMP activation, we evaluated the regulation of MMP-3 after FOXO3a transduction. mRNA levels of MMP-3 was found to be significantly upregulated by real-time PCR assay. The relative fold elevation of MMP-3 transcript compared with GAPDH was 1 ± 0.3 at 16 hours, 137 ± 40 at 24 hours, and 690 ± 250 at 40 hours (Figure 2A). MMP-3 protein synthesis also increased in Ad-TM-FOXO3a–transfected HUVECs and decreased in Ad-DN-FOXO3a–transfected HUVECs. In contrast, TIMP-1 protein expression was found to be modestly decreased in Ad-TM-FOXO3a–transfected HUVECs and increased in Ad-DN-FOXO3a–transfected HUVECs. (Figure 2B).

Next, we performed casein and gelatin zymography to study whether increased MMP-3 protein retained enzymatic activity. In the casein zymography analysis, a major band corresponding to 57 kDa, and caused by the protease activity of MMP-3 was increased in media from Ad-TM-FOXO3a–transfected cells compared with media from Ad-GFP–transfected cells. In contrast, transduction of dominant-negative FOXO3a decreased MMP-3 activity in this assay (Figure 2C, lower panel). Because MMP-3 is reported to activate other MMPs including MMP-2/MMP-9, we performed MMP-3 specific knockdown experiments using MMP-3 siRNA. We found that MMP-2 and MMP-9 enzymatic activity decreased with MMP-3 siRNA, suggesting that MMP-3 activation contributed to increased enzymatic activity of MMP-2 or MMP-9 after FOXO3a activation. Moreover, we also found that MMP-3 specific knockdown showed similar degree of reduction of apoptosis to that of GM6001 (supplemental Figure IIA through IID).
Stress to Endothelial Cells Induces Endogenous FOXO3a-MMP-3 Activation

To examine the role of the endogenous FOXO3a-MMP regulatory axis during the stress response, HUVECs were subjected to serum starvation or to heat shock without adenoviral transfection. An increase in active FOXO3a in nuclear fraction was detected at 6 hours after the initiation of serum starvation (supplemental Figure IIIA), which correlated with the time course of MMP activity increase in the zymography assay (supplemental Figure IIIB). In the nonstressed state, endogenous FOXO3a is located in cytoplasm and is inactive (supplemental Figure IIIC, left upper panel). In addition, heat shock rapidly induced intranuclear translocation and activation of endogenous FOXO3a by 30 minutes (supplemental Figure IIIC, left lower panel), which can be confirmed by the increased FOXO3a amount in nuclear fraction (supplemental Figure IIID). Enzymatic activity of MMP-3 was also found to be increased under these conditions (supplemental Figure IIIE). Heat shock induced cell death, which was significantly reduced by GM6001 treatment, suggesting that FOXO3a-MMP signaling contributes to the cytotoxicity of ECs during stress (supplemental Figure IIIF).

FOXO3a Reduces Cell-to-ECM Interaction

To investigate whether FOXO3a activation leads to ECM degradation, we evaluated the degradation of the matrix protein fibronectin after FOXO3a-transduction. After 12 hours of Ad-TM-FOXO3a transfection, fibronectin levels decreased significantly and this downregulation was effectively reversed by treatment with GM6001, suggesting that the enhanced MMP activity might contribute to the degradation of fibronectin (supplemental Figure IVA). To examine this regulation further, the supernatant from each culture dish was mixed with 5 μg of fibronectin and the degree of protein degradation was measured. The supernatant from the Ad-TM-FOXO3a-transfected culture dish displayed significantly increased fibronectin-proteolytic activity. Furthermore, the enhanced degradation was reduced by treatment with GM6001, suggesting these responses were mediated by a secreted MMP (supplemental Figures IVB and V). Next, to evaluate
the functional significance of FOXO3a activation on adhesive capacity of HUVECs to ECM, we tested the adhesive capacity of HUVECs on fibronectin coated plates. FOXO3a activation significantly decreased the adhesion of HUVECs to the plates, which was reversed in the presence of GM6001 (supplemental Figure IVC).

FOXO3a Reduces Cell-to-Cell Adhesion

Next, we examined whether FOXO3a affected cell-to-cell adhesion systems maintained by the major adhesion molecules, VE-cadherin and β-catenin. Figure 3A shows uniform VE-cadherin staining over the entire cell margin, and Figure 3B shows the staining pattern of its intracellular partner β-catenin, that is present at adherens junction as well as in the cytoplasm of HUVECs (Figure 3A and 3B, left). At 24 hours after Ad-TM-FOXO3a transfection, the expression of both of these molecules was decreased at the cell-cell junctions (Figure 3A and 3B, middle). The degradation of both VE-cadherin and β-catenin was almost completely reversed in the presence GM6001, suggesting that MMP might mediate these response (Figure 3A and 3B, right). These morphological changes were corroborated by immunoblot analysis of cell lysates, which showed decreased VE-cadherin and β-catenin protein in TM-FOXO3a-transduced HUVECs and partial reversal by GM6001 (Figure 3C).

FOXO3a Activation in the Vessel Wall Induces Endothelial Denudation and Loss of Barrier Function

We evaluated vascular integrity after FOXO3a activation in rabbit carotid arteries after FOXO3a transduction. At 24 hours after Ad-TM-FOXO3a transfer, arterial segments showed significant endothelial denudation, which was markedly reversed by GM6001 (supplemental Figure VIA and VIB). Immunohistochemical staining of PECAM-1 revealed greater endothelial denudation after FOXO3a gene transfer compared with the control. Endothelial denudation was significantly reversed by GM6001, suggesting that these findings were mediated by MMPs (Figure 3C). Scanning electron microscopy showed a regular and smooth-surfaced endothelial lining in the Ad-GFP group (Figure 4B, upper middle), similar to the endothelial lining of a normal, uninjured carotid artery (Figure 4B, upper left). In contrast, the luminal surface of segments harvested from the Ad-TM-FOXO3a–transfected group demonstrated an irregular endothelial lining, exposing subendothelial tissue and various stages of endothelial cells detached from the subcellular matrix (Figure 4B, lower panels). GM6001, again, significantly reversed these phenomena (Figure 4B, upper right).

FOXO3a Activation Impairs Endothelial Function

Vascular rings from each carotid artery were applied to an organ chamber system to assess both endothelium-dependent
(Figure 4C) and endothelium-independent vasorelaxation (Figure 4D). Both endothelium-dependent and endothelium-independent vasorelaxation were significantly impaired in the TM-FOXO3a–transduced vessels. However, the FOXO3a-induced impairment of endothelium-dependent vasorelaxation in response to acetylcholine was much more profound compared with the relatively mild impairment of endothelium-independent vasorelaxation in response to sodium nitroprusside. In addition, the MMP blocker, GM6001, which would in theory prevent cellular detachment or anoikis, significantly reversed only the deficit in endothelium-dependent vasorelaxation (Figure 4C) and not endothelium-independent vasorelaxation (Figure 4D). These data suggest that FOXO3a activation in the vessel results in a greater impairment of endothelial-dependent vasorelaxation, and that the profound impairment of endothelial-dependent vasorelaxation may be related to anoikis.

Discussion

The most important finding of our study is that FOXO3a, a major forkhead transcription factor expressed in endothelial cells, suppressed cell-to-cell and cell-to-matrix interaction in ECs. These data suggest a novel mechanism of FOXO3a-induced apoptosis in endothelial cells. First, FOXO3a induced detachment of ECs from ECM or adjacent ECs leading to anoikis through degradation of major adherens junctional proteins such as fibronectin, VE-cadherin, and β-catenin. Second, FOXO3a induced MMP-3 and suppressed TIMP-1 expression in ECs. The finding that EC detachment, disruption of ECM and resulting anoikis were significantly reversed by GM6001, a MMP inhibitor, suggests the increased MMP activity mediates these responses. Third, these phenomena were also reproduced under pathophysiologic conditions. For example, endogenous FOXO3a induction and MMP activation were observed in ECs under stressful conditions such as serum starvation or exposure to heat shock. Finally, we showed both in vivo and ex vivo, that FOXO3a induced endothelial denudation and endothelial dysfunction in blood vessels.

FOXO3a, ECM, and EC Survival

Control of apoptosis in the endothelium is a critical issue during pathologic processes such as inflammation, vascular remodeling, and allograft vasculopathy. The binding to ECM is an important survival signal to ECs. The degradation of the ECM proteins such as fibronectin has been shown to affect the apoptotic program of ECs and epithelial cells. Another important element in EC survival is the adherens junction, in which VE-cadherin anchors the cytoskeleton of neighboring cells via β- or γ-catenin. Both the degradation of VE-cadherin and β-catenin have been observed during apoptosis, implicating their role in apoptosis. In the present study, we found FOXO3a activation decreased fibronectin, VE-cadherin, and β-catenin levels. This decrease could be the result of the reduced synthesis of ECM, rather than the increased degradation. In this regard, Daly et al showed that FOXO1, another forkhead transcription factor, regulated genes involving in the remodeling of ECM such as decorin, lumican, and collagen type III. However, this hypothesis does not explain both the rapid decrease of ECM and adherens junction proteins after FOXO3a transduction, nor does it explain the ability of the MMP inhibitor to neutralize the effect of FOXO3a on cytotoxicity. Thus, we think that degradation by MMPs plays a major role in matrix regulation by FOXO3a.

FOXO3a and MMP3 Activation in ECs

MMPs constitute a family of extracellular proteases that are involved both in normal physiological remodeling and in pathologic degradation of the ECM. ECM degradation by MMPs has been shown to be a signal that can induce apoptosis in several studies. Moreover, exogenous...
TIMP-1, the major negative regulator of MMPs, has been shown to exert a potent antiapoptotic effect on ECs. Among various MMPs, we suggest MMP-3 might mediate FOXO3a-induced EC anoikis for 3 reasons. First, MMP-3 was highly upregulated in the microarray analysis of FOXO3a-induced genes, and this upregulation was confirmed at both mRNA and protein levels in the present study. Second, MMP-3 has a consensus binding site for the forkhead factors in its promoter sequences suggesting transcriptional regulation by FOXO3a. Third, we found MMP-3 levels increased after FOXO3a activation. Other studies evaluating promoter sequence or microarray analysis have suggested possible regulation of some MMPs by forkhead factors, and though PI3K/Akt pathway was suggested to increase enzymatic activity of MMPs. However, to the best of our knowledge, this is the first report documenting a direct regulatory connection between MMPs and forkhead factors.

FOXO3a and Other MMPs Activation in ECs

Interestingly, enzymatic activities of MMP-2 and MMP-9 also increased after FOXO3a activation. However, we could not find any evidence of direct regulation of MMP-2 or MMP-9 by FOXO3a. First, neither mRNA nor the protein amount of MMP-2/MMP-9 changed after FOXO3a activation. Second, in the microarray data comparing Ad-TM-FOXO3a-transfected HUVECs with either Ad-GFP or Ad-DN-FOXO3a–transfected HUVECs, the expression pattern of MMP-2/MMP-9 did not show any significant change (data not shown). Third, the promoter sequences of MMP-2 or MMP-9 do not contain the consensus binding site for the forkhead transcription factors. Therefore, we hypothesize that the increased enzymatic activity of MMP-2 or MMP-9 observed after FOXO3a activation involves indirect regulation through changes in the expression of other molecules. We suspected that MMP-3 activation may be responsible for the activation of MMP-2/MMP-9, consistent with previous findings. Indeed, we found that MMP-3 knockdown with siRNA led to significant reduction in the enzymatic activity of MMP-2 and MMP-9, supporting the hypothesis that MMP-3 activation contributes to increased enzymatic activity of MMP-2 or MMP-9 after FOXO3a activation. Moreover, we also found that MMP-3 knockdown revealed a significant reduction of apoptosis compared with that of GM6001, suggesting further that MMP-3 plays a key role in FOXO3a-induced ECM disruption. However, because MMP activity is also regulated by other molecules, such as TIMP-1 and TIMP-2, we do not exclude the possibility that the suppression of TIMP-1 or the activation of other MMPs might result in global MMP activation. For this reason, we decided to use the general MMP inhibitor GM6001 to investigate the association between FOXO3a, MMP activity, and endothelial cell apoptosis. Finally, we cannot ascribe FOXO3a-induced apoptosis solely to MMP activation, because blocking experiment with GM6001 failed to completely reverse the effects of FOXO3a on apoptosis and anoikis. However, these findings offer new insights to the multifaceted role of FOXO3a in ECs.

In Vivo Significance of MMP Activation by FOXO3a in ECs

We found that FOXO3a activation induced endothelial denudation in vessels through in vivo gene delivery. We also found FOXO3a activation impaired both endothelium-dependent and endothelium-independent vasorelaxation through ex vivo evaluation of vasoreactivity. These effects may be caused by the proapoptotic actions of FOXO3a on ECs as well as smooth muscle cells. However, the degree of vasorelaxation impairment had a significantly greater impact on endothelium dependent function. Furthermore, GM6001 significantly reversed endothelium-dependent vasorelaxation, but had little or no effects on endothelium-independent vasorelaxation, suggesting that MMP activation may play a role in endothelial dysfunction following FOXO3a activation in vivo.

In summary, suppression of EC-ECM or EC-EC interaction represents a novel mechanism of FOXO3a-mediated EC apoptosis. Our results also suggest that MMP activation caused by deregulated FOXO3a expression could contribute to endothelial dysfunction of blood vessel.

Sources of Funding

This study was supported by the grants from the National Research Laboratory for Cardiovascular Stem Cell, Ministry of Science & Technology, and from the Innovative Research Institute for Cell Therapy (IRICT: A0662660), Ministry of Health & Welfare, Republic of Korea.

Disclosures

None.

References

Materials and methods

Cell culture, adenoviral vectors, and siRNA

Four to six passage human umbilical vein endothelial cells (HUVEC, Clonetics™) were seeded on 2% gelatin-coated (Sigma, St. Louis, MO) culture plates and incubated in endothelial growth medium (EGM bullet kit, Clonetics) with 10% fetal bovine serum.

To evaluate the role of FOXO3a, an adenoviral vector expressing constitutively-active triple-mutant FOXO3a (Ad-TM-FOXO3a) was used as previously described1,2. Briefly, Ad-TM-FOXO3a was constructed by replacing three phosphorylation sites, Thr32, Ser253, and Ser315 with alanine residues, thus unphosphorylatable by Akt. And to analyze the intracellular localization or behavior of FOXO3a, we used an adenoviral vector expressing wild type form (Ad-WT-FOXO3a), which was also tagged with hemagglutinin sequence. For blocking experiment, an adenoviral vector expressing dominant-negative form (Ad-DN-FOXO3a), of which transactivation domain from the C terminus was deleted, was used. As a control, an adenoviral vector expressing green fluorescence protein (Ad-GFP) was used.

For gene transduction, cells were transfected with 25MOI of the adenoviral vector. With this dose, we confirmed the transfection efficacy was more than 90% at 24 hours.
As each adenoviral vector also contained GFP sequence, transfection efficacy can be confirmed by visualization of the green fluorescence (GFP) of transduced cell (Figure 1A). And we presented the baseline validation data regarding adenoviral vector in the supplemental figure 1.

For specific blockage of MMP-3, MMP-3 Stealth™ RNAi (or siRNA) with oligofectamine™ reagents as were used following manufacturer’s instructions (Invitrogen). A control siRNA was also purchased from Invitrogen. Control siRNA or MMP-3 siRNA were treated 24 hours prior to the indicated adenovirus instillation.

Cell viability and apoptosis assay

Subconfluent HUVECs in 96-well plates were infected with adenoviral vectors and cell viability was quantified using tetrazolium salt, WST-1, as instructed by the manufacturer (Roche). Apoptosis after 24 hours of adenoviral vector transfection was determined by measuring the hypodiploid, fragmented, DNA content using FACS analysis. For blocking experiment, we treated HUVECs with 10µM GM6001 (Chemicon), an MMP inhibitor, for 18 hours from 6 hours post infection.

Real-time PCR analysis
Changes in RNA-expression of MMP-3 was determined by quantitative real-time PCR as previously described\(^4\). Primers and probes used were as follows: forward primer: 5' - TCT CGT TGC TGC TCA TGA AAT T - 3'; reverse primer: 5' - TAG AGT GGG TAC ATC AAA GCT TCA G - 3'; probe: 5' - 6FAM-CTC CCT GGG TCT CTT TCA CTC AGC CA-TAMRA-3. Fold changes in gene expression were determined using the Ct method. To standardize the quantification of the genes, GAPDH from each sample was quantified and the selected genes were normalized to GAPDH.

Immunoblot analysis

Immunoblot analysis was performed by modification of the procedures described previously\(^5\). Primary antibodies used in this study are as follows: anti-FOXO3a (rabbit polyclonal IgG, Upstate Biotechnology, 1:1000), anti-MMP-3 (R&D systems) 1:500, anti-fibronectin 1:500 (BD transduction laboratories), anti-β-catenin 1:500 (BD transduction laboratories) and anti-VE-cadherin 1:500 (BD transduction laboratories). For immunoblot of MMP-3 and TIMP-1, immunoprecipitation was performed for protein concentration.

Casein and gelatin zymography
Zymography was performed using a previously described method. Briefly, samples of media conditioned by cell culture under different experimental conditions were separated on an 8% polyacrylamide gel containing 0.1% casein or gelatin. After electrophoresis, gels were stained with 0.05% Coomassie Brilliant Blue R250 (Sigma Co.) and the location of caseinolytic and gelationlytic activity detected as clear bands.

Immunofluorescent staining

For immunofluorescent staining, HUVECs were cultured on fibronectin coated dishes. After 12 hour of adenoviral transfection, HUVECs were fixed with 100% methanol for 30 minutes at -20°C, and blocked by incubation with 1% BSA in PBS for 30 minutes at room temperature. Cells were then reacted with either mouse monoclonal antibody against fibronectin (1:50 dilution), β-catenin (1:100 dilution), or VE-cadherin (1:100 dilution) overnight at 4°C. Cells were incubated for 1 hour with PE-conjugated goat anti-mouse IgG antibody at a 1:50 dilution and then, with 4,6-diamidino-2-phenylindole(DAPI) for 20 minutes to visualize nuclei.

Fibronectin degradation assay.

The degradation of fibronectin by the supernatant from Ad-TM-FOXO3a transfected
HUVEC cultured dish was evaluated. Supernatant from each culture plate was mixed with 5μg of fibronectin and incubated at 37°C for 24 hours. The reaction was terminated by the addition of EDTA and the proteins were electrophoresed by 8% SDS-PAGE gel under reducing condition. The transferred SDS-PAGE gel was stained with Coomassie Brilliant Blue and the degree of digestion was evaluated by densitometry.

Cell detachment assay

HUVECs (1x10^4 cells/well) were seeded on each well of the fibronectin (5μg/cm^2) precoated 96 well plates and incubated at 37°C for 6 hours to allow adhesion. After cell adhesion, 25 MOI of adenoviral vectors were added to each conditioned well. After incubation for 24 hours, detached cells were removed by two washes with PBS. Residual viable cells were quantified by the WST-1 assay.

In vivo gene delivery in rabbit carotid arteries

All animal experiments were performed after receiving approval of the Institutional Animal Care and Use Committee (IACUC) of Clinical Research Institute in Seoul National University Hospital (AAALAC accredited facility). And National Research Council (NRC) guidelines for the care and use of laboratory animals were observed.
(revised 1996). In vivo gene delivery was performed in carotid arteries of New Zealand White rabbits as previously described\(^7\) to evaluate whether FOXO3a transduction induced EC denudation and functional derangement. Briefly, animals were given an intramuscular injection of ketamine (1.2mg/kg) and xylazine (0.3mg/kg) for sedation and anesthesia. Paramedian cervical incisions were made in the anterior neck, and the common carotid arteries were exposed bilaterally by blunt dissection. Branches of the carotid artery were tied off using 5-0 ethilon sutures. After the administration of heparin (100 U/kg), proximal and distal vascular clamps were applied to the carotid artery, and a 24-gauge angiocatheter was inserted into the distal part of the isolated segment. The needle was withdrawn and blood removed from the segment of the artery using a gauze wick at the open end of the angiocatheter. A mixture containing the each adenoviral vector (final concentration: \(3.5 \times 10^9\) pfu/400\(\mu\)L) was then instilled intraluminally via the catheter. After 30 minutes, vascular clamps were removed, and flow was restored. In case of the blocking experiments, 0.5M of GM6001 was instilled simultaneously. Six hours later, the animals were euthanized and carotid arteries were isolated and harvested.

Histologic analysis of endothelial denudation

The harvested arterial segments were stained with Evans blue to identify the
endothelium-denuded luminal surface. The endothelium-retained area was defined macroscopically as the area that was not stained with the Evans blue dye. Another portion of the harvested vessels were used for immunohistochemistry, performed as previously described\(^8,9\). The primary antibody used was anti-rabbit CD31 PECAM-1 monoclonal antibody (1:200 dilution; Transduction laboratories). Each arterial specimen was blindly analyzed by computerized morphometry using Image Pro Plus Analyzer Version 4.5 (Media Cybernetics). Endothelial coverage was assessed by the percentage of PECAM-1 positive circumference versus total in three different sections. The extent of EC detachment was analyzed using scanning electron microscopy with standard techniques\(^10\).

Organ chamber analysis for vascular reactivity

Rings (4 mm long) from each carotid artery were used to assess vascular reactivity. Rings were connected to isometric force displacement transducers (Grass Instruments) and suspended in organ chambers as previously described\(^7\). Using acetylcholine and sodium nitroprusside, endothelium-dependent and endothelium-independent relaxation was evaluated using standard methods\(^11\).
Statistical analysis

All data are expressed as mean ± SD. A 2-tailed t-test was used to compare continuous variables. The comparisons of means from in vitro studies were performed using the Mann-Whitney U test due to small sample numbers. All calculations were performed using SPSS 13.0, and p < 0.05 was considered statistically significant.

References for methods

2000;113 (Pt 22):3979-87.

Supplemental figure 1. Validation of adenoviral vectors

A. Confirmation of unphosphorylatable FOXO3a

Subconfluent HUVEC were infected with adenovirus at 25MOI each for 20 hours in EGM2%.

B. Confirmation of WT-, TM-, DN-FOXO3a

 FOXO3a

P(S253)-FOXO3a

\(\alpha \)-tubulin

C. Evaluation of cytotoxicity

D. FACS analysis evaluating apoptotic fraction
Supplemental figure 2. MMP-3 knock-down experiments using MMP-3 siRNA

A. RT-PCR validating MMP-3 knock-down

<table>
<thead>
<tr>
<th></th>
<th>No siRNA</th>
<th>Control siRNA</th>
<th>MMP-3 siRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Casein and gelatin zymography

<table>
<thead>
<tr>
<th></th>
<th>No siRNA</th>
<th>Ad-TM-FOXO3a</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP-3</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>MMP-2</td>
<td>0.75</td>
<td>1.5</td>
</tr>
</tbody>
</table>

C. Morphologic change of HUVECs 16 hours after transfection of the indicated adenovirus ± siRNA.

Plain microscope

Fluorescent microscope detecting GFP. Magnification x 200

D. FACS analysis evaluating apoptotic fraction 16 hours after transfection of the indicated adenovirus ± siRNA.

Apoptotic cells (%) with hypodiploid DNA

- Ad-GFP + control siRNA: 13.78 ± 1.05
- Ad-TM-FOXO3a + control siRNA: 23.72 ± 0.06
- Ad-TM-FOXO3a + MMP-3 siRNA: 17.05 ± 0.07

Ad-GFP + control siRNA Ad-TM-FOXO3a + control siRNA Ad-TM-FOXO3a + MMP-3 siRNA
Supplemental figure 3. Endogenous FOXO3a-MMP activation under stressful conditions.

A. Serial immunoblot of endogenous FOXO3a after serum starvation

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>24 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXO3a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-tubulin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Casein and gelatin zymography

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>24 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein zymography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMP-3</td>
<td>(57 kDa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelatin zymography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMP-2</td>
<td>(72 kDa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Immunofluorescent staining for endogenous FOXO3a after heat incubation (42°C)

D. Immunoblot FOXO3a after heat shock.

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>24 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat shock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytosolic fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat shock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E. Casein zymography for MMP3

F. Cell viability

![Cell viability graph](image)
Supplemental figure 4. FOXO3a degrades fibronectin, leading to inhibition of cell-ECM interaction.

A. Immunofluorescent microscopy of fibronectin.

B. Fibronectin degradation assay.

1. Only Fibronectin,
2. Only supernatant
3. Ad-GFP, 4. Ad-TM-FOXO3a
5. Ad-TM-FOXO3a + GM6001 (5μM)
6. Ad-TM-FOXO3a + GM6001 (10μM)

C. Adhesion assay.
Supplemental figure 5. Figures supplementing ‘Supplemental figure 4B’ regarding fibronectin degradation

A. Another ELISA to supplement Figure 4B

1. Only Fibronectin,
2. Only supernatant
3. Ad-GFP, 4. Ad-TM-FOXO3a
5. Ad-TM-FOXO3a + GM6001 (10μM)

B. TINA densitometry to supplement Figure 4B

[Bar chart showing TINA densitometry with P values for each group: P = 0.027, P = 0.013]
Supplemental figure 6. Morphological and functional evaluation of endothelial denudation

A. Macroscopic photographs of the luminal surface of harvested arterial segments with Evans blue stain

B. Densitometry for unstained area

C. Morphometry of Figure 5A

D. Representative figures among triplicated organ chamber experiments of harvested blood vessels transfected with the indicated adenovirus.
Legends for supplemental figures.

Supplemental figure 1. Validation of adenoviral vectors

For gene transduction, cells were transfected with 25MOI of the adenoviral vector. With this dose, we confirmed the transfection efficacy was more than 90% at 24 hours. As each adenoviral vector also contained GFP sequence, transfection efficacy can be confirmed by visualization of the green fluorescence (GFP) of transduced cell.

(A) Immunoblot analysis of HUVEC transfected by either Ad-GFP, Ad-WT-FOXO3a, or Ad-TM-FOXO3a for phosphor-FOXO3a, total FOXO3a, and α-tubulin. Ad-TM(triple mutant)-FOXO3a was constructed by replacing three phosphorylation sites, Thr32, Ser253, and Ser315 with alanine residues, thus unphosphorylatable by Akt and constitutively active. Bands of total FOXO3a are clear and even in both groups of HUVEC transfected with Ad-WT-FOXO3a and Ad-TM-FOXO3a, suggesting well-controlled and similar transfection rates among HUVECs. Under the same transfection rates, phosphor-FOXO3a was well detected in Ad-WT-FOXO3a, whereas it was negligible in Ad-TM-FOXO3a, suggesting that WT is phosphorylatable and TM is not. Endogenous FOXO3a expression was observable in Ad-GFP lane when the blot was exposed longer. (B) Immunoblot analysis for phosphorylated form and total FOXO3a in
HUVECs transfected with three different adenoviral constructs of FOXO3a; WT [wild type], TM [triple mutant, unphosphorylatable], and DN [dominant negative, truncated at C-terminal transactivation domain]. Phosphorylated FOXO3a was observed in WT-FOXO3a lane. The size of DN-FOXO3a is shorter than that of WT- or TM-FOXO3a. Endogenous FOXO3a expression was observable in Ad-GFP lane when the blot was exposed longer. (C) Differences in cytotoxicity on HUVEC between three adenoviral constructs of FOXO3a in the presence of 10% FBS. Cytotoxicity was greatest in HUVEC infected with Ad-TM-FOXO3a, least with Ad-DN-FOXO3a. (D) Differences in pro-apoptotic action on HUVEC between adenoviral constructs of FOXO3a in the absence of FBS. Serum deprivation-induced apoptosis was greatest in Ad-TM-FOXO3a and Ad-WT-FOXO3a, whereas least in Ad-DN-FOXO3a. Note that the difference between TM and WT becomes greater in the presence of serum than in the absence of serum, because WT-FOXO3a can be phosphorylated and inactivated in the presence of serum, but TM-FOXO3a is not.

Supplemental figure 2. MMP-3 specific knock-down experiments using MMP-3 siRNA

(A) RT-PCR of MMP-3 16 hours after transfection with the indicated adenovirus.
Control siRNA or MMP-3 siRNA were treated 24 hours prior to the indicated adenovirus instillation. MMP-3 mRNA expression was increased after transfection of Ad-TM-FOXO3a, which was completely blocked by MMP-3 siRNA. (-) : no RNA loaded negative control (B) Casein and gelatin zymography. In casein zymography (upper panel), major bands of 57 kDa due to the protease activity of MMP-3 were clearly observed. MMP-3 enzymatic activity was clearly shown to be increased after transfection of Ad-TM-FOXO3a, but the increment was completely reversed by MMP-3 siRNA. Similarly, the increased gelatinolytic activity of MMP-2 (72kDa) following transfection of Ad-TM-FOXO3a was also found reversed with MMP-3 siRNA. (C) Morphologic change of HUVECs 16 hours after transfection of the indicated adenovirus ± siRNA. Plain (upper panels) and fluorescent (lower panels) microscopic findings of HUVECs 16 hours after transfection with 25 MOI of the indicated adenoviral vectors and the indicated siRNA. TM-FOXO3a gene transduction induced significant cytotoxicity of HUVEC, which was significantly reversed by MMP-3 siRNA. Magnification x 200. (D) FACS analysis for hypodiploid DNA indicating apoptotic cells. TM-FOXO3a gene transfer induced significant apoptosis of HUVEC, which was significantly reversed by MMP-3 siRNA.
Supplemental figure 3. Activation of endogenous FOXO3a and MMPs in ECs under stressful conditions.

(A) Serial immunoblot analysis of endogenous FOXO3a in nuclear fraction and in cytosolic fraction from 0 to 24 hours after serum starvation without adenoviral transfection. Serum starvation increased nuclear FOXO3a from 6 hours, suggesting that stressful condition may activate FOXO3a in ECs. CREB (cyclic-AMP response element binding protein) indicates nuclear fraction. (B) Casein and gelatin zymography. Serum starvation stimulated the activities of MMP-3 and then MMP-2 time-dependently in ECs. (C) Immunofluorescent staining for endogenous FOXO3a after heat incubation (42°C). In normal culture condition of ECs without heat shock, the endogenous FOXO3a located in cytoplasm, thus remaining inactive (Upper left). Heat shock rapidly translocated endogenous FOXO3a into nucleus, indicating activation of endogenous FOXO3a (Lower left). As a positive control for nuclear localization of FOXO3a, Ad-TM-FOXO3a-transfected ECs are shown in the upper right panel. Magnification x 200. (D) Immunoblot analysis of FOXO3a in nuclear and cytosolic fraction after heat shock. Heat shock treatment induced nuclear translocation of endogenous FOXO3a in ECs. (E) Casein zymography for MMP-3. Heat shock treatment induced MMP-3 activity over time. (F) Bar graph illustrates the decreased cell viability after heat shock, which was
partially reversed by MMP inhibitor or DN-FOXO3a transfection. Data are expressed as mean ± SE (* P<0.01, n = 6).

Figure 4. FOXO3a degrades fibronectin, leading to inhibition of cell-ECM interaction.

(A) Immunofluorescent microscopy of fibronectin. HUVECs were transfected with Ad-GFP (left), Ad-TM-FOXO3a (middle), or Ad-TM-FOXO3a in the presence of GM6001 (right). (Magnification x 200). Bright field microscopic findings of HUVECs on fibronectin-coated dishes were on second rows. Middle and lower panels showed merged images with a fibronectin immunofluorescent image (magnification x 600). (B) Fibronectin degradation assay. (C) Adhesion assay. Media containing adenoviral vectors (25 MOI) were added to HUVEC (1x10⁴ cells/well) seeded on the fibronectin-precoated plates. After incubation for 24 hours, detached cell were removed and residual viable cells quantified by the WST-1 assay. Results are presented as mean ± SE (p < 0.05, n = 16).
Supplemental figure 5. Figures supplementing Figure 4B regarding fibronectin degradation

(A) Fibronectin degradation assay. 50μg of supernatant from each culture dish was mixed with 5μg of fibronectin and incubated at 37°C for 24 hour. The mixture was transferred to SDS-PAGE gel, stained by Coomassie Blue. Supernatant from HUVEC transfected with Ad-TM-FOXO3a showed a significantly greater fibrinolytic activity on fibronectin than that from HUVEC with Ad-GFP. TM-FOXO3a-induced lysis of fibronectin was reversed by MMP inhibitor GM6001. (B) Quantitative data from TINA densitometry of 5 separate ELISA experiments show that the degree of fibronectin degradation was significantly different and that GM6001 significantly reversed FOXO3a-induced fibronectin degradation.

Supplemental figure 6. Morphological and functional evaluation of endothelial denudation

(A) Macroscopic photographs of the luminal surface of the harvested arterial segments with Evans blue stain. Ad-GFP or Ad-TM-FOXO3a was delivered intraluminally in rabbit carotid arteries. Endothelium-denuded area was stained blue with the Evans blue
dye. (B) Densitometry of extent of denudation area, which was calculated as percentage of endothelium remaining area per total area in three different sections. Bar graphs show significant differences between three groups (P < 0.05). (C) Morphometric assessment of the ratio of PECAM-1-positive luminal circumference and total in three different sections, showing significant differences between three groups (P < 0.05). (D) Representative figures among triplicated organ chamber experiments of harvested blood vessels transfected with control Ad-GFP, Ad-TM-FOXO3a, or Ad-TM-FOXO3a + GM6001. Initial contractile response by epinephrine (Epi) was used to determine tissue viability in each carotid artery ring (left). And endothelium-dependent vasorelaxation to acetylcholine (middle) and endothelium-independent vasorelaxation to sodium nitroprusside (right) were evaluated.