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ABSTRACT 

 

Recently Hanzawa et al. developed a reliability design method for the calculation 

of the expected damage level of armor blocks of a horizontally composite 

breakwater. In their method, the wave transformation from deepwater to the design 

site was calculated by assuming unidirectional random waves being normally 

incident to a straight coast with parallel depth contours. In real situations, however, 

directional random waves with variable principal wave directions will be incident 

to the shore of irregular bathymetry. In the present study, the reliability design 

method of Hanzawa et al. was extended to take into account the variability in wave 

direction in the computation of wave transformation. The directional variability 

includes directional spreading of waves, obliquity of the design principal wave 

direction from the shore-normal direction, and its variation about the design value. 

Even though the wave incident angle to the breakwater could be calculated, normal 

incidence was assumed in the calculation of the damage level of armor blocks. It 

was found that the inclusion of directional variability in the computation of wave 

transformation had great influence on the computed expected damage level of 

armor blocks. The previous design, which disregarded wave directionality, could 

either overestimate or underestimate the expected damage level by a factor of two 

depending on water depth and seabed slope. 

 

Keywords: Armor blocks, breakwaters, expected damage level, reliability design, 

variability in wave direction 
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1. Introduction 

 

Reliability design methods have been developed for breakwater designs since the 

mid-1980s, especially in Europe and Japan. In Europe, van der Meer (1988a) 

proposed a probabilistic approach for the design of breakwater armor layers, and 

Burcharth (1991) introduced the partial safety factors in the reliability design of 

rubble mound breakwaters. Recently Burcharth and Sørensen (1999) established 

partial safety factor systems for rubble mound breakwaters and vertical 

breakwaters by summarizing the results of the PIANC (Permanent International 

Association of Navigation Congresses) Working Groups. The European reliability 

design methods belong to what is called as Level 2 method. On the other hand, in 

Japan Level 3 reliability design methods have been developed, in which the 

expected sliding distance of a caisson of a vertical breakwater (Shimosako and 

Takahashi, 1999; Goda and Takagi, 2000) or the expected damage level of armor 

blocks of a horizontally composite breakwater (Hanzawa et al., 1996) during their 

lifetime is estimated. Monte Carlo simulations are used to take into account the 

uncertainties of various design factors. The Level 2 method with partial safety 

factors is easier for engineers to use, but the Level 3 method gives generally more 

useful design information. 

In the Japanese reliability design methods, the wave transformation from 

deepwater to the location of the breakwater is calculated by assuming 

unidirectional random waves being normally incident to a straight coast with 

parallel depth contours. Wave attenuation by random breaking is evaluated with 

Goda’s (1975) model. In real situations, however, directional random waves with 

variable principal wave directions will be incident to the shore, undergoing 

refraction as well as shoaling and breaking. Ignoring the variability in wave 

direction, wave heights may be overestimated at the location of the breakwater and 

consequently the breakwater will be over-designed. Takayama and Ikeda (1993) 

reported that in order to correct this overestimation, the significant and maximum 

wave heights need reduction of 6% and 13%, respectively. A more realistic wave 

transformation model, however, should be used to more accurately compute the 

shallow water waves by taking into account the variability in wave direction. 

In the present study, we extend the Level 3 reliability design method developed 

by Hanzawa et al. (1996) to take into account the variability in wave direction. The 

directional variability includes directional spreading of random directional waves, 

obliquity of the design principal wave direction from the shore-normal direction, 
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and its variation about the design value. To calculate the transformation of random 

directional waves over an arbitrary bathymetry including surf zones, we used 

Kweon et al.’s (1997) model, which was developed by combining Kweon and 

Goda’s (1996) breaking wave model and Karlsson’s (1969) spectral wave 

refraction model. The model was verified by comparison with Goda’s (1975) 

results for unidirectional random waves on a plane beach and with the 

experimental data of Vincent and Briggs (1989) for the transformation of random 

directional waves over a shoal. 

In the following section, the computational procedure for estimating the 

expected damage level of breakwater armor blocks is described. In section 3, the 

variability in wave direction off the east coast of the Korean peninsula is analyzed. 

In section 4, several computational examples are presented to compare the results 

of the present study with those of previous authors and to illustrate the importance 

of wave directionality. Major conclusions and a proposal of future studies then 

follow. 

 

 

2. Computational Procedure 

 

   The basis of the reliability design method is to consider the stochastic 

behaviors of loads and resistances. As described in the introduction, in the present 

study we employ the Level 3 design method, which introduces the probability 

density functions of design factors. Use of random variation in design factors is 

explained below in conjunction with the computational flow chart sketched in Fig. 

1. 

 

2.1. Offshore waves 

 

Damage to breakwater armor blocks is in general caused by large waves 

comparable to design waves. Therefore the annual maximum offshore wave height 

is considered sufficient to be incorporated into the calculation. The offshore wave 

height is usually determined by referring to the extreme wave height distribution, 

which is constructed using the extreme wave data of long-term observations or 

hindcasts. In the present study, the following Weibull distribution function was 

employed for the annual maximum wave heights: 
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where x  stands for the annual maximum significant wave height, A  and B  

are the scale and location parameters, respectively, and k  is the shape parameter. 

An annual maximum significant wave height is randomly sampled from the 

distribution function and is denoted as eH0 . This wave height is further given a 

stochastic variation with the normal distribution having a mean 0H  and standard 

deviation 
0H . This variation represents the uncertainty in the estimate of the 

extremal distribution function owing to the limited sample size of extreme wave 

data or the inaccuracy in wave hindcasts. The mean wave height and the standard 

deviation are assumed to have the following relations with eH0  (Takayama and 

Ikeda, 1994): 

 

eHHeH HHH 000 000
,)1(                                (2) 

 

where 
0H  and 

0H  denote the bias and deviation coefficients, respectively. 

The sample offshore wave height cH0  to be used in the calculation is then 

determined by a normalized random number based on Eq. (2). The corresponding 

significant wave period is determined to yield a constant wave steepness (0.03 in 

this study) offshore: 
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where g  is the gravitational acceleration. 

   Offshore random directional waves with the directional spreading parameter 

maxs  are assumed to be incident with the principal wave direction 0)( p  with 

respect to the shore-normal direction. The principal wave direction is assumed to 

have a stochastic variation with the normal distribution having a mean being the 
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same as the design principal wave direction dp 0)(  and a standard deviation 

0)( p . Unidirectional random waves normally incident to the shore are simulated 

by setting maxs , 0
0)( 

p  and 0)( 0 dp . 

The offshore directional wave spectrum is expressed as 

 

)|()(),( 00 fGfSfS                                           (4) 

 

where f  and   denote the wave frequency and angle, respectively, )(0 fS  is 

the Bretschneider-Mitsuyasu frequency spectrum given by 
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and )|( fG   is the directional spreading function given by 
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In the preceding equation, 0G  is a constant given by 
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where   denotes the Gamma function. The spreading parameter s  is related to 

its peak value maxs  as 
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where pf  denotes the frequency at the spectral peak and is related to the 

significant wave period as )05.1/(1 sp Tf   for the case of the Bretschneider-
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Mitsuyasu frequency spectrum. 

 

2.2. Wave transformation 

 

The variation in water level by tide is assumed to have a sinusoidal variation 

between the design water level (e.g. LWL) and the water level increased by the 

tidal range (e.g. HWL). A sample of the tidal elevation   with respect to the 

mean water level is determined based on this assumption using a random number 

uniformly distributed between 0 and 2  as the phase of the sinusoidal curve. 

As offshore waves propagate toward the design site, they undergo various 

shallow water wave transformation processes. In the present study, we use the 

Kweon et al.’s (1997) model to calculate the transformation of random directional 

waves. Given the offshore directional wave spectrum and water level, the model 

calculates the directional spectrum at each grid point in the model domain, from 

which the significant wave height and principal wave direction are obtained. The 

model includes most of the shallow water wave transformation processes except 

reflection and diffraction. 

The wave height at the design site eH 3/1 , calculated by the Kweon et al’s 

(1997) model, is also assumed to have computational uncertainty, and thus is given 

stochastic variation with the normal distribution as with the offshore wave height. 

The mean 3/1H  and the standard deviation 
3/1H  are assumed to have the 

following relations with eH 3/1 : 

 

eHHeH HHH 3/13/13/1 3/13/13/1
,)1(                          (9) 

 

where 
3/1H  and 

3/1H  denote the bias and deviation coefficient, respectively. 

The sample wave height at the design site cH 3/1  is determined by a normalized 

random number based on Eq. (9). 

The Kweon et al.’s (1997) model computes the principal wave direction as well 

as the wave height at the design site. Theoretically, therefore, we could include the 

effect of oblique wave attacks on the damage of breakwater armor blocks. 

However, all the stability formulas for breakwater armor blocks proposed up to 

date assume waves normally incident to the breakwater, even though there are 
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several studies on the influence of wave directionality on breakwater armor blocks 

(Losada and Giménez-Curto, 1982; Christensen et al., 1984; Matsumi et al., 1994; 

Ryu, 2001). Therefore, we assume that the waves are incident normally to the 

breakwater in the calculation of the damage level of armor blocks. The calculated 

damage level, however, will be different from that obtained using the Goda’s 

(1975) model because in our model the wave directionality has been included in 

the computation of wave transformation. 

 

2.3. Computation of damage level of armor blocks 

 

In the reliability design of breakwater armor blocks, the expected total damage 

level during the lifetime of the breakwater is aimed to be smaller than an allowable 

design damage level. In order to estimate the damage level of the armor blocks of a 

horizontally composite breakwater, the following stability formula proposed by 

Hanzawa et al. (1996) for Tetrapods was used: 
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where SN  is the stability number,   the relative mass density of the armor 

block in water ( 1/   s ; s  = mass density of the block,   = mass density 

of water), nD  the nominal diameter of the block ( 3/1V ; V  = volume of the 

block), 0N  the relative damage level defined by van der Meer (1988b) as the 

actual number of displaced blocks within the width (along the breakwater 

alignment) of one nominal diameter nD , and N  the number of waves during a 

storm. This equation can be rewritten to estimate the damage level as 
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Damage to the armor blocks was assumed to occur under rough sea conditions 
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of the wave height of design level ( criH ) or greater in a cumulative way over the 

lifetime of the breakwater. criH  is defined as the wave height corresponding to 

00 N  in Eq. (10), or ncri DH  33.1 . The accumulation of damage is 

calculated by Hanzawa et al.’s (1996) method, which is summarized below. 

Supposing the wave height at the breakwater for the i th year is )(3/1 iH c  and the 

total damage level up to the )1( i th year is )1(0 iN , the number of waves 

which attacked the breakwater up to the )1( i th year, 'N , is determined using 

)(3/1 iH c  and )1(0 iN  respectively in place of 3/1H  and 0N  in the following 

equation derived from Eq. (10): 

 

2
0

10

3/1

32.2

33.1

' N
D

H

N n























                                        (12) 

 

The total damage level up to the i th year, )(0 iN , is calculated by Eq. (11) with 

)(' iNNN   and )(3/13/1 iHH c . The first estimation of the damage level 

during the i th year is calculated as )1()( 000  iNiNN . Taking into account 

the uncertainty of damage, this damage level is further given a stochastic variation 

with the normal distribution with the mean 0N  and the standard deviation 

0N . Analyzing the experimental data of Tanimoto et al. (1985), Hanzawa et al. 

(1996) proposed the relation between 0N  and 
0N  as 
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The sample data of cN0  was determined by the normalized random number 

with the standard deviation defined by the preceding equation. The damage level 

up to the i th year is finally calculated as cNiNiN 000 )1()(  . 

The method described above is the procedure for calculating the damage level 

up to a certain year, and the total damage level accumulated within one lifetime is 

calculated by repeating this process up to the lifetime of the breakwater. The 

process of one lifetime cycle is shown in Fig. 1. This process is repeated 2,000 
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times, and the total accumulated damage levels thus obtained are added together 

and divided by 2,000 to yield the expected total damage level. The number, 2,000, 

was chosen based on Hanzawa et al. (1996), who have shown that a stable 

statistical result can be obtained by doing so. 

 

 

3. Analysis of Variability in Principal Wave Direction 

 

In order to get some idea of the variability in principal wave direction in the 

field, we analyzed the wave hindcasting data provided on the homepage of the 

Korea Ocean Research and Development Institute (http://www.kordi.re.kr). The 

deepwater wave hindcasting was made every three hours for 20 years (from 1979 

till 1998) using the HYPA (HYbrid PArametrical) model and the ECMWF 

(European Center for Medium-range Weather Forecasts) wind data. The grid size 

was about 27 km. The site provides statistical data including significant wave 

height and period, principal wave direction, and directional wave spectrum at 67 

locations around South Korea as shown in Fig. 2. Among these we used the data at 

the locations along the east coast of Korea, or those from 53 to 67 (excluding 57 

and 60) as shown in Fig. 2, where the coast is relatively simple, the tidal range is 

very small (i.e. several tens of centimeters), and waves from northeast direction are 

dominant. 

In Table 1, for 16-point bearings, are given the number of occurrence of waves 

greater than 3 m of significant wave height at each location. The average principal 

wave direction measured clockwise from the north, that measured 

counterclockwise from the shore-normal direction, and the standard deviation are 

also presented for each location. The shoreline lies North to South for the locations 

from 53 to 58, and it is inclined 30 from the north-south direction for those from 

59 to 67 (see Fig. 2). The average principal wave direction is almost constant at 

about 42 up to the location 61, and after that, it turns east for more northerly 

locations. The standard deviation changes to give a slightly larger value as one 

moves southward, probably because of the effect of typhoons. The average 

principal wave direction with respect to the shore-normal direction shows two 

relatively constant values at the locations from 53 to 58 and from 62 to 64. Notably, 

at the locations from 53 to 58, the principal wave direction is largely deviated from 

the shore-normal direction with a relatively large standard deviation, indicating 

that the influence of wave directionality on the estimation of shallow water wave 
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heights may be important. 

 

 

4. Illustrative Examples 

 

In this section, we present several computational examples to compare our 

results with those of previous authors and to illustrate the importance of wave 

directionality. Even though the Kweon et al.’s (1997) model is capable of 

computing the transformation of random directional waves on irregular bathymetry, 

hereinafter we consider only a plane beach, which is simple but sufficient to 

illustrate the influence of wave directionality. The common computational 

conditions are given below. 

The Weibull distribution function with 0.2k , 23.2A , and 78.4B  was 

used as the extreme distribution of the offshore wave height, which gave a design 

deepwater wave height, with a return period of 50 years, to be 9.2 m. The 

deepwater wave steepness was assumed to be constant at 0.03 so that the 

corresponding design wave period was 14.0 s. The parameters expressing the 

uncertainties for the offshore wave height were 0.0
0
H  and 1.0

0
H . The 

number of waves was set to 1,000 for all the computations. A tidal range of 1.0 m 

was assumed. Seabed slopes of 1/50 and 1/10 were employed. Water depths of 7, 9, 

11, 13, 15, 17, 19, and 21 m at LWL were examined. The design wave height at 

each water depth was determined by computing the wave heights corresponding to 

2.90 H  m while changing the water level from LWL to HWL and taking the 

largest wave height. The mass of a Tetrapod was calculated by Eq. (10) under the 

criteria of 3.00 N  and 1000N  against the design wave height at each water 

depth. 

 

4.1. Unidirectional random waves normally incident to plane beach 

 

Hanzawa et al. (1996) computed the expected damage level of the Tetrapods of 

a horizontally composite breakwater exposed to unidirectional random waves 

normally incident to a plane beach using Goda’s (1975) model. On the other hand, 

Kweon et al. (1997) simulated the unidirectional random waves on a plane beach 

by setting the directional spreading parameter maxs  to be 1,000 in their three-

dimensional random breaking wave model, showing that their results were in good 
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agreement with Goda’s. Herein we used Kweon et al.’s model to compute the wave 

transformation, and compared the calculated expected damage level of the 

Tetrapods with Hanzawa et al.’s results. It was expected that these two results 

would not show much difference because the wave models used gave similar 

results. The parameters expressing the uncertainties in the computation of wave 

transformation were 13.0
3/1

H  and 09.0
3/1
H  as with Hanzawa et al. 

The design wave heights and masses of Tetrapods at different water depths are 

given in Table 2. In general both values are a little greater than those of Hanzawa 

et al.’s (1996) paper for the seabed slope of 1/10, while they are a little smaller for 

the slope of 1/50, due to a difference in the wave transformation models used. Fig. 

3 shows a comparison of the expected damage level at different water depths 

between the present model and Hanzawa et al.’s (1996) model. There is a small 

difference observed between the two models, but the overall trends are similar, as 

expected. 

Hanzawa et al. (1996) used the bias for the wave transformation 

13.0
3/1

H . According to Takayama and Ikeda (1993), the bias in Goda’s 

(1975) model is reported as –0.06 for the significant height and –0.13 for the 

maximum height. Since the significant height is used in the design of rubble 

mound breakwaters, therefore, it may be more reasonable to use 06.0
3/1

H . 

Fig. 4 shows a comparison between the results of 13.0
3/1

H  and 

06.0
3/1

H . The trend with respect to the water depth is the same for each 

seabed slope, but the damage level with 06.0
3/1

H  is about twice that with 

13.0
3/1

H . 

 

4.2. Examination of influence of variation in wave direction 

 

The primary purpose of the present study is to examine the influence of the 

directional variability upon the computation of the expected damage level of armor 

blocks, which was not included in Goda’s (1975) model. For this purpose, we 
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carried out the computation for the six cases listed in Table 3. 

Case 1 is for unidirectional waves normally incident to the beach as in Goda’s 

(1975) model. Case 2 includes the effect of directional spreading. The spreading 

parameter maxs  equal to 20 was used, which corresponds to the deepwater wave 

steepness of 0.03 (Goda, 2000, p. 35). Case 3 is for unidirectional waves incident 

at 20 with respect to the shore-normal direction, including only the effect of wave 

refraction. Case 4 examines the effect of the variation in the principal wave 

direction. 0)( 0 dp  and 15
0)( 

p  were used. For these cases, 

06.0
3/1

H  and 09.0
3/1
H  were used. In Cases 2 to 4, however, is included a 

fraction of the effects of refraction and directional spreading that were ignored in 

Goda’s (1975) model. Therefore, the bias must be smaller than –0.06, say –0.04. 

However, how small was uncertain, so the value of –0.06 was used without change. 

Case 5 included all of the directional variability partly considered in Cases 2 to 4. 

Case 6 represented the conditions at the locations 53 to 58 in Fig. 2 (see also Table 

1). In Cases 5 and 6, all of the directional variability was included, so no bias was 

assumed in the computation of wave transformation, i.e., 0.0
3/1
H  was used. 

However, the computational error must still exist, so 09.0
3/1
H  was kept the 

same. 

Fig. 5 shows the variation of wave height with water depth for maxs  of 1,000 

and 20. As expected, the height of the waves with directional spreading is smaller 

than that of the unidirectional waves. However, in the shallower part of the beach 

with a slope of 1/50, the difference is immaterial probably because the effect of 

directional spreading disappears as the waves propagate toward the shore on a 

mildly sloping beach. 

Fig. 6 shows a comparison of the expected damage level at different water 

depths between Case 1 and 2. Because the height of the directional waves is 

smaller than that of the unidirectional waves as shown in Fig. 5, the expected 

damage level for Case 2 is smaller than that of Case 1. The difference of expected 

damage level between the two cases becomes smaller as water depth decreases, as 

does the difference in wave height shown in Fig. 5. One may wonder why the 

expected damage level shows considerable differences in smaller water depths on 

the beach of 1/50 slope, whereas the variation of wave height with maxs  in 
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shallow water ( 3.1'/ 0 Hd ) is inappreciable as shown in Fig. 5. Fig. 5 was 

constructed using a constant deepwater wave height of 9.2 m and varying water 

depths. In the water depth of 7.0 m, '/ 0Hd  is equal to 0.76 and thus the 

influence of maxs  on the wave height variation and the damage of armor blocks 

must be negligible on the 1/50 slope. In the calculation of the damage of armor 

blocks, however, the deepwater wave height varied, with its design value of 50-

year return period of 9.2 m. It could be as small as about 4.0 m so that '/ 0Hd  

became 1.75 in the water depth of 7.0 m. For this value of '/ 0Hd , the variation of 

wave height with maxs  would be significant so that the difference of damage 

could be large. 

Fig. 7 shows a comparison between Case 1 and 3. The height of obliquely 

incident waves is smaller than that of normally incident waves owing to wave 

refraction. Thus the damage level in Case 3 is smaller than that of Case 1. Fig. 8 

shows a comparison between Case 1 and 4. Again due to the effect of wave 

refraction, the damage level in Case 4 is computed to be smaller than that of Case 

1. 

Fig. 9 shows a comparison between Case 1 and 5. In contrast to Cases 2 to 4, 

the expected damage level of Case 5 is greater than that of Case 1 except for the 

larger water depths of the seabed slope of 1/10, where the difference is very small. 

Also the difference in the expected damage level increases with decreasing water 

depth for the slope of 1/50; this is different from Cases 2 to 4 where the difference 

decreases or remains constant with decreasing water depth. Noting that 
3/1H  was 

–0.06 and 0.0 in Case 1 and 5, respectively, the use of 06.0
3/1

H  seems to 

reduce the wave height too much in this case compared with the computation 

taking all the directional variability into account. In principle, however, the 

appropriateness of the use of 06.0
3/1

H  should be examined based on the 

comparison of measured and calculated wave heights. 

Fig. 10 shows a comparison between Case 1 and 6. Except for the smaller 

water depths of the seabed slope of 1/50, the expected damage level of Case 6 is 

smaller than that of Case 1. Compared to Case 5, the design principal wave 

direction is much larger and the standard deviation is also a little larger in Case 6, 

so a greater influence of wave refraction is expected. This influence can be 

observed by comparing the results of Cases 5 and 6. In deeper water and in the 
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area of the steeper seabed slope, the difference between Case 5 and 6 is significant 

because wave refraction is still important. However, the difference becomes 

smaller in shallower water with a milder seabed slope where the wave breaking 

effect dominates wave refraction. 

Since the above discussions on the difference of expected damage levels are 

mainly based on the difference of wave heights, it may be instructive to examine 

the wave height distributions at several water depths. In Table 4, for each case are 

given the numbers of occurrence of cH 3/1  in different ranges of cH 3/1  in the 

water depth of 9 m on the beach with a slope of 1/50. The total number of 

occurrence for each case is 100,000, that is obtained by 2,000 simulations of 50-

year lifetime of the breakwater. Fig. 11 shows the ratios of the number of 

occurrence of cH 3/1  for each case to that of Case 1 in different ranges of cH 3/1 . 

The value for each range was plotted at the midpoint of the range (e.g., at 2.5 for 

the range of 2.0 to 3.0 m). Fig. 11 indicates that the ratios of the number of 

occurrence of cH 3/1  of Cases 2 to 4 to that of Case 1 are greater than 1.0 for 

smaller values of cH 3/1  but smaller than 1.0 for larger values of cH 3/1 . This 

means that the wave heights in Cases 2 to 4 are on the whole smaller than those in 

Case 1, explaining why the expected damage levels of Cases 2 to 4 are smaller 

than that of Case 1 for the water depth of 9 m and the seabed slope of 1/50. On the 

other hand, the ratios of the number of occurrence of cH 3/1  of Case 5 to that of 

Case 1 are smaller than 1.0 for smaller value of cH 3/1  and greater than 1.0 for 

larger values of cH 3/1 , except for the range of 2.0 to 3.0 m, for which, though, the 

number of occurrence is very small. This means that the wave heights in Case 5 

are on the whole larger than those in Case 1, explaining why the expected damage 

level of Case 5 is greater than that of Case 1. A similar explanation could be made 

for Case 6. 

Table 5 and Fig. 12 show the similar results as Table 4 and Fig. 11, but in the 

water depth of 19 m. Similar trends as those of the water depth of 9 m are observed 

for Cases 2 to 4. The ratios of the number of occurrence of cH 3/1  of Case 5 to 

that of Case 1 are close to unity except the ranges of 2.0 to 4.0 m and 12.0 to 13.0 

m, for which, though, the number of occurrence is relatively small. Therefore, the 

difference of the expected damage level between Case 1 and 5 is small as shown in 

Fig. 9. On the other hand, the ratios of the number of occurrence of cH 3/1  of Case 

6 to that of Case 1 are greater than 1.0 for smaller value of cH 3/1  and smaller 

than 1.0 for larger values of cH 3/1 . This means that the wave heights in Case 6 are 

on the whole smaller than those in Case 1, explaining why the expected damage 
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level of Case 6 is smaller than that of Case 1. 

In summary, for a more reasonable estimation of the wave height in shallow 

water, it is necessary to compute the wave transformation taking into account the 

variability in wave direction rather than correcting the wave height by using a 

constant bias 
3/1H . It was also observed that the previous designs, which 

disregarded wave directionality (as in the calculation of Case 1), could largely 

overestimate or underestimate the expected damage level depending on water 

depth and seabed slope. However, this observation is based on the assumption that 

the waves are normally incident to the breakwater. In order to more precisely take 

into account the effect of wave directionality, a stability formula for obliquely 

incident waves should be developed. 

 

 

5. Conclusions and Proposals for Future Studies 

 

In this study, the Level 3 reliability design method developed by Hanzawa et al. 

(1996) for calculating the expected damage level of armor blocks in a horizontally 

composite breakwater was extended to take into account the variability in wave 

direction. It was found that the inclusion of the variability in wave direction had 

great influence on the computed results of the expected damage level of armor 

blocks. The previous design, which disregarded wave directionality in the 

computation of wave transformation, could either overestimate or underestimate 

the expected damage level by a factor of two depending on water depth and seabed 

slope. 

In this study, only plane beaches were examined to compare the results with 

those of previous authors. However, the method developed in this study could be 

applied to a real beach because Kweon et al.’s (1997) model used in this study is 

capable of computing the transformation of random directional waves over an 

arbitrary bathymetry including surf zones. Also, the method developed in this 

study for a horizontally composite breakwater could be applied to a rubble mound 

breakwater if a proper stability formula of armor blocks is provided. It also could 

be used for the calculation of the expected sliding distance of caissons in a vertical 

breakwater. The latter may be interesting, in particular, because Goda’s (2000) 

pressure formula includes the effect of wave angle at the breakwater, which can be 

calculated using Kweon et al.’s (1997) model. Finally, in order to more precisely 
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take into account the effect of wave directionality on the stability of armor blocks, 

a reliable stability formula for oblique incident waves should be developed, like 

Goda’s pressure formula for a vertical breakwater. 
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Table 1 

Averages and standard deviations of principal wave directions (unit: degrees) 

 

Location 

No. 

Number of occurrence ( m30 H ) Average 

0)( p  

(cw from N) 

Average 

0)( p  

(ccw from 

shore-normal 

direction) 

0)( p

 NNW N NNE NE ENE E ESE 

53  3 102 104 46 5  40.5 49.5 18.2 

54  7 80 126 48 5  42.0 48.0 18.1 

55  6 87 121 41 6  41.0 49.0 18.1 

56  8 59 133 37 3  42.0 48.0 16.9 

58  4 66 154 33 2 1 42.1 47.9 15.8 

59  8 43 148 29 1  42.3 17.7 15.2 

61 3 7 51 143 32 1  41.0 19.0 17.0 

62  3 16 134 50 1  48.3 11.7 13.9 

63  2 10 137 48 2 1 49.6 10.4 13.7 

64  3 8 113 36 2 1 49.0 11.0 14.5 

65   3 58 51 2 1 55.8 4.2 14.0 

66   2 37 39 6 1 58.8 1.2 15.9 

67   2 2 32 3 1 66.9 -6.9 14.7 
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Table 2 

Design wave heights and masses of Tetrapods 

 

Seabed slope 1/10 

Water depth (m) 7 9 11 13 15 17 19 21 

Design wave height (m) 8.97 9.82 10.48 10.79 10.33 9.88 9.58 9.36 

Mass of Tetrapods (tf) 78.4 103.0 124.8 136.6 119.8 104.8 95.5 89.3 

Seabed slope 1/50 

Water depth (m) 7 9 11 13 15 17 19 21 

Design wave height (m) 5.03 6.22 7.32 8.29 9.08 9.59 9.58 9.37 

Mass of Tetrapods (tf) 13.9 26.2 42.7 62.1 81.4 95.9 95.5 89.3 
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Table 3 

Test conditions 

 

Case No. maxs  dp 0)( (deg.) 
0)( p (deg.) 

3/1H  

1 1000 0 0 -0.06 

2 20 0 0 -0.06 

3 1000 20 0 -0.06 

4 1000 0 15 -0.06 

5 20 20 15 0.0 

6 20 48 17 0.0 
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Table 4 

Number of occurrence of cH 3/1  in different ranges of cH 3/1  in water depth of 9 

m on a beach with slope of 1/50 

 

Case 

No. 

Number of occurrence 

2.0-3.0 3.0-4.0 4.0-5.0 5.0-6.0 6.0-7.0 7.0-8.0 

1 6 1,586 31,427 55,880 10,900 201 

2 15 2,058 34,787 53,906 9,087 147 

3 15 1,769 33,506 54,786 9,765 159 

4 15 1,714 32,510 55,350 10,243 168 

5 15 1,035 20,773 58,607 18,891 679 

6 48 2,643 26,816 55,457 14,633 403 
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Table 5 

Same as Table 4, but for water depth of 19 m 

 

Case 

No. 

Number of occurrence 

2.0-3.0 3.0-4.0 4.0-5.0 5.0-6.0 6.0-7.0 7.0-8.0 

1 44 2,431 16,591 29,169 24,927 14,867 

2 50 2,994 18,312 30,414 24,568 13,728 

3 50 2,771 17,370 29,899 24,727 14,255 

4 44 2,636 17,076 29,511 24,864 14,512 

5 21 1,896 15,190 29,414 26,218 15,331 

6 49 4,019 22,852 32,518 22,708 11,155 

Case 

No. 

Number of occurrence 

8.0-9.0 9.0-10.0 10.0-11.0 11.0-12.0 12.0-13.0 13.0-14.0 

1 7,290 3,183 1,105 351 39 3 

2 6,246 2,569 839 268 9 3 

3 6,760 2,867 967 307 24 3 

4 6,971 2,987 1,037 329 30 3 

5 7,285 3,064 1,139 352 87 3 

6 4,389 1,609 496 172 30 3 
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Captions of figures 

 

1. Flow chart for computation of total damage level within one lifetime [modified 

from Hanzawa et al. (1996)].  

2. Location of wave hindcasting (from http://www.kordi.re.kr). 

3. Comparison of expected damage level between present model and Hanzawa et 

al.’s (1996) model. 

4. Comparison of expected damage level between 13.0
3/1

H  and 

06.0
3/1

H . 

5. Comparison of wave height variation with water depth between unidirectional 

waves ( 1000max s ) and directional waves ( 20max s ). 

6. Change of expected damage level due to effect of directional spreading. 

7. Change of expected damage level due to effect of wave refraction. 

8. Change of expected damage level due to effect of variation of principal wave 

direction. 

9. Change of expected damage level due to all effects of directional spreading, 

wave refraction, and variation of principal wave direction. 

10. Same as Fig. 9, but for use of field data at locations 53 to 58 in Fig. 2. 

11. Ratio of number of occurrence of cH 3/1  to that of Case 1 in different ranges 

of cH 3/1  in water depth of 9 m on a beach with slope of 1/50. 

12. Same as Fig. 11, but for water depth of 19 m. 
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Fig. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Offshore wave height distribution, Seabed slope,  

Water depth: h , Tidal range:   

[Yearly maximum wave train of the i-th year] 

Offshore waves: )(),( 3/10 iTiH  

Statistical parameters: 
00

, HH   

Number of waves: )(iN  

)(),max(,)(,0)()(0)(

2~0:phase,~0)(

0,0),(0)(0

0
iNiS

pdpip
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




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



 

Wave deformation by Kweon et al.(1997) 

)(3/1 ieH  

)(3/1 icH  

criHiH c )(3/1  

Equivalent number of waves N  necessary for 

)(3/1 icH  to cause accumulated damage )1(0 iN  

Calculation of )(0 iN  

)1(0)(00  iNiNN  

cN0  

cNiNiN 0)1(0)(0   

0N  for one lifetime sample 

')( NiNN   

')( NiNN   

)(0 ieH  
Offshore wave height by 

extreme distribution and 

probability of non-exceedance 

Design for wave height of return 

period of 50 years 

In case of no damage 
accumulation 

3/1,3/1),(3/1 HHieH   

5.0
)0(36.0

0
NN 

 

No 

Yes 

 denotes random number 
generation 

( i=1 to 50 )  
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Expected value of 0N  can be calculated by 

repeating the above process more than 2000 times 
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Fig. 2 
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Fig. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 9 11 13 15 17 19 21

Depth (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
p

e
x
te

d
 V

a
lu

e
 o

f 
N

0

Slope 1/10 (Present model)

Slope 1/50 (Present model)

Slope 1/10 (Hanzawa, 1996)

Slope 1/50 (Hanzawa, 1996)

 

 

 



 28 

Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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