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Abstract

This paper investigates the impact of the forecast error on performance of a reservoir system for
hydropower production. Forecast error is measured as the Root Mean Square Error (RMSE) and
parametrically varied within a Generalized Maintenance Of Variance Extension (GMOVE) procedure.
A set of transition probabilities are calculated as a function of the RMSE of the GMOVE procedure
and then incorporated into a Bayesian Stochastic Dynamic Programming model which derives
monthly operating policies and assesses their performance. As a case study, the proposed
methodology is applied to the Skagit Hydropower System (SHS) in Washington state. The results
show that the system performance is a nonlinear function of RMSE and therefore suggested that
continued improvements in the current forecast accuracy correspond to gradually greater increase in
performance of the SHS.

Keywords: forecast accuracy, reservoir system operation, seasonal forecast, Bayesian stochastic dynamic
programming
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1. INTRODUCTION

The value of hydrologic forecast has been a
topic of active research for a number of years,
but few previous studies have attempted to
assess system performance as a function of
(1982) and
have

forecast accuracy. Yeh et al
Mishalani (198%)
parametrically varied forecasts to investigate the

and Palmer used

impact of forecast uncertainty on reservoir
operations. Their prediction coefficient that was
used to vary the forecast accuracy in their
studies, however, was not directly related to
any measure of forecast error so that one could
their
coefficient into a specific degree of the forecast

not translate a value of prediction
accuracy. The prediction coefficient introduced
by Lettenmaier (1984) explicitly represented the
forecast accuracy but no attempt has been made
to incorporate it into any reservoir system
assessment.

This study derives a relationship between
forecast accuracy and performance of a
reservoir system. Seasonal flows are forecasted
using a Multiple Linear Regression (MLR)
model and the Root Mean Square Error (RMSE)
of the MLR forecasts is calculated. This RMSE
is parametrically reduced in the Generalized
Maintenance Of Variance Extension (GMOVE)
using a reduction factor. For each discrete value
of the RMSE

probabilities are estimated and incorporated into

reduction factor, transition
a reservoir operation model, Bayesian Stochastic
(BSDP). The BSDP
model derives monthly operating policies for the
Skagit  Hydropower (SHS) in
Washington state and estimate its Expected
Annual Gain (EAG) as a performance criterion.
As a result of this study, a plot of the EAG
and the RMSE reduction factor is presented.

2. DESCRIPTION OF STUDY AREA

Dynamic Programming

System

The SHS is located in the upper Skagit
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Valley of the North Cascade, approximately 140
miles north of Seattle (Figure 1). It produces a
major portion of the electrical energy generated
by Seattle City Light (SCL). The SHS consists
of three hydropower dams, Ross, Diablo, and
Gorge. Ross dam dominates the others in size

with the total maximum capabilities of the

Gorge, Diablo, and Ross plants being 176.7 MW,
159 MW, and 450 MW at maximum elevations,
1990). On a
monthly basis, Diablo and Gorge are operated to

respectively (Seattle City Light,

maintain constant elevations, 875 ft and 1205 ft,
respectively, while Ross varies between 1475 ft
to 16025 ft. Therefore, the normal gross heads
of the Diablo, and Gorge dams are 380 ft and
330 ft while the normal gross head of the Ross
dam ranges from 270 ft to 3975 ft.

Historical records for the natural inflows exist
from July 1928 to the present, on monthly basis.
For this study,
December 1988 are used and assumed to be

data from January 1929 to

periodically stationary.

Like other rivers in the mountainous western
United States where seasonal forecasts based on
snow pack are particularly important in
reservoir operations, more than 50 % of annual
inflow into the SHS occurs from April through
August. This hydrologic characteristic motivates
use of seasonal forecasts during the snowmelt
season when reservoir operating policies are
derived. In this study, the seasonal flow is
termed ‘the through-August flow’, defined by
the remainder of the seasonal inflow through

August (Kelman et al., 1990);

v, =S, 0

where Y, is the through-August flow for
month ¢ and @, is the inflow during month

t.
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Upper Skagit
watershed

Winthrep

Piable Lake

(b) Details of the Skagit Hydropower System.

Figure 1. Map of the Skagit Hydropower System.

3. DEVELOPMENT OF SEASONAL
FORECASTING MODEL

In many parts of the United States (US), the
accuracy of seasonal forecasts is limited hecause
forecasts  are

such highly dependent on

precipitation, which in general, cannot be
forecasted accurated for periods beyond several
1979). In

western US,

days (Lettenmaier and Garen,
mountainous areas such as the
seasonal flow forecasts are more accurate since
a large portion of the spring and summer flow
originates from winter precipitation that occurs
as snow. During the snowmelt season (usually

from April through August in the western US,

FI3E FEUE 19984 12]]

there is relatively little precipitation, so the
future runoff is more strongly affected by the
of the

meteorological

accumulation at the beginning
than by
uncertainty. In this study, the through-August

SNOW
forecast  period
flows are forecasted using a MLR snowmelt
their

parametrically varied in the GMOVE procedure.

runoff  model and accuracy 13
Development of a Snowmelt Runoff Model
Multiple linear regression models have been
used widely for forecasting snowmelt runoff
because they are simple and reasonably accurate
for long-term forecasts (Hawley et al., 1980).
To select an appropriate regression equation, it
is necessary to select predictor variables based
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Table 1. Regression Parameters, the Adjusted R? and the RMSE Associated with the Muitiple

Linear Regression.

Month ag aj as R (%) RMSE"
April 663.91 14.94 36.03 91 700.5
May 503.01 10.32 41.08 9% 676.4
June 163.08 12.32 37.34 97 675.5
July -211.42 13.81 20.67 91 1292.0

“ regression parameters in equation (2), F, =a,~+ a;PW,+ a;W,, where PW, and W, are measured

in inch and unit of F, is cfs.

P RMSE associated with the multiple linear regression = o7,

on correlations of the snowmelt runoff with
various hydrologic and meteorological series.
The most common choices are total winter
precipitation, runoff, and snow water equivalent
(SWE), as noted by Grygier et al. (1989) for
Unlike  California
hydrology, however, the snowmelt runoff for the

California  river  basins.
Skagit river basin can be best correlated with
total winter precipitation and SWE. Thus, only
two predictor variables are used in this study:
total winter precipitation (PW,) during the
period from October to the date of forecast
measured at Newhalem in Washington and
average of SWEs measured at 15 snow courses

at the date of forecast (W,). At the beginning

of a month, therefore, the through-August
forecast (F,) is calculated with the MLR
equation,

Ft: (Zo+611PVV[+02VVt (2)

The regression parameters for March, April,
May and June are estimated in this study using
the 37 years from 1952 through 1988 during
which the SWE historical data are available.
The least squarc estimates of the regression
parameters reported in Table 1. The
adjusted R? in Table 1 indicates that the
regression model explains more than 90 % of

are

the variation in Ft for all the snowmelt months.
The through-August flows are then forecasted

for the same 37 vyears, assuming that the
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in equation (9).

11

parameters are invariant year by year. Since the
BSDP (which will
operation model) requires

be used as a reservoir
‘one month ahead

through-August forecast’ (F,y,), the current

month’s  inflow is subtracted from the
through-August forecast as follows:
r 1 = Fr— @ (3)

At the beginning of March, for example, the
March-through—-August forecast (F;) is calculated
using equation (2) to forecast the April-through
~August flow. Hereafter, the seasonal forecast
represents the one month ahead through-August
forecast. The last column of Table 1 shows the
RMSE of the MLR seasonal forecasts for each
month. The values calculate the forecast
accuracy associated with the MLR for the SHS

and are parametrically reduced using the
GMOVE procedure (that is described in the
following section).

Parametrical Change of the Forecast

Accuracy using the GMOVE

GMOVE has been developed as a record
extension technique that can reproduce the
forecast accuracy as well as the mean and
variance of the existing forecasts (Grygier et al.,
1939). In this study, the GMOVE is assumed to
‘generate’ a series of seasonal forecasts for a
given value of the RMSE rather than to ‘extend
the existing forecast series.

Consider the GMOVE equation that generates

BEXEREEHLE



a seasonal forecast (F,; ;) using the current

month’s flow (@;) and the actual seasonal

flow (Y,+1):

Froy=pr,, +0,(Q—po)+ c(Yui—uy, )
)

where up, | is the desired mean of the seasonal
forecast series and g, and gy, , are sample

estimates of mean of the current month’s flow
and the actual seasonal flow series, respectively.
The coefficients b, and ¢, must satisfy:

2 2 2
2 _ O-Fru— o Yo Fo GFM]
by = oL — oy, 0%
Q Yo ,
' ‘ (5)
o — P¥LELORL T boogy,,
;=

Oy,

where o, is the desired standard deviation of

the forecast series, 0y, and oy,, are sample
estimates of standard deviation of the current
month’s flow and the actual seasonal flow
Oy, 5., 1s the desired

series, respectively,

correlation coefficient between the forecasts and
the corresponding actual seasonal flows, and

©qv., 1s a sample estimate of correlation

coefficient between the current month’s flows
and the actual seasonal flows. Selection of the
root of bt should
correlations of the seasonal forecasts with the
as with the

maintain  reasonable

current month’s flows, as well
actual seasonal flows. For details, see Grygier
et al. (19%9).

In this study, GMOVE technique is assumed
to be an unbiased

forecast generator, i.e.

tr,, = fy, . The statistics of the current
month’s flows and the actual seasonal flows
(ug,, ty,,, 09, 0y, and oy, g, ) are
estimated using monthly and seasonal historical
data from January 1929 to December 1988

Generation of the forecasts using the GMOVE

31 YR 19981 121

is then determined with only two parameters
such as op,, and ©vy, r,, Or equivalently the

variance of the forecast error which satisfies:

Uze,,l = E[(Ytﬂ‘FtH)z] = ffzy,,1 (6)

2 2
= 20vy.,8 0% Oy, T 0%,

The standard deviation of the forecasts is given

from equation (6):

— 2 2 2
O’sz_‘oywx’“:-lo-ylwt\/ aylu(p YIOIFI‘I_1)+GQI~1
(N

. 2 2 2
blnce oyrl(p Yu]Fnl—l)—*_o‘L’ulZO’ pyulFul
should be greater than its minimum correlation

assuming that ey, r, Iis positive,

Ue,., p
2 (8)

min
- = 1—
0 Yoo F,. ( Oyer

In this study py, g, is set to o™ y 1,
and thus
GMOVE procedure is ¢, , which is commonly

the only variable required in the

known as the RMSE. To obtain various degrees

of the forecast accuracy, the RMSE is
parametrically varied using the following
equation,

o, ,= (1-8) 0o, 9)

where 6%, , is the RMSE associated with the

MLR (Table 1, last column) and & is termed
'the RMSE reduction factor.” A smaller value of
the RMSE a better
reducing the variance of the seasonal forecasts

results  in prediction,

and consequently narrowing the associated

transition probability band.

For a given value of the reduction factor,

GMOVE coefficients &, and <¢; can be
calculated using equations (9), (7) and (5).
Using the GMOVE coefficients, some
correlations  associated with  the  seasonal

forecasts can be also derived as follows:
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_ biogt gy, oy,

OQF., =

O‘F.»-l
~ biPQq., G, T Cipg. Y., To,,
CQuFy (10)
OF,.,
2 2
 bipg 0 09 09 T biciogy 00y, Y Cloyy  OvOy,,
OFF,, Or 0,
Note that the lag-2 correlation between the current month’'s flows and the seasonal

monthly and seasonal flows are assumed to be

negligible when gy, is derived. These

correlations will be used to calculate transition
probabilities required in the BSDP model which
will be described in a later section.

4. DEVELOPMENT OF A RESERVOIR
OPERATION MODEL

Kim and Palmer (1997) developed a BSDP
model for operating the SHS to maximize the
total benefit resulting from energy production of
the SHS and its with

systems. Coupling Bayesian estimation into a

interchange other
SDP framework, BSDP explicitly incorporates
forecast uncertainties into the SDP formulation
through the posterior
probabilities. See Kim and Palmer (1997) for
of the prior and

flow transition
more detailed description
posterior transition probabilities as well as the
BSDP equation. In this study, two hydrologic
state variables are considered: the current
months inflow and the seasonal forecast which
represents one month ahead through August
forecast as defined before. However, the current
months inflow is used as the first hydrologic
state variable for all months but the seasonal
forecast is used as the second hydrologic state
variable only for the snowmelt season from
March through June.

The monthly operating rules derived by Kim
and Palmer (1997) are assessed as a function of
the forecast accuracy. To estimate the transition
probabilities, the BSDP model basically requires
four correlations: lag-1 autocorrelation of the

monthly flows (pggq, ), correlation of the
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forecasts ( p g,r,,,), correlation between the next

month’s flows and the seasonal forecasts

(0g, k. ), and the lag-1 autocorrelation of the

seasonal  forecasts (0 pp,,). The  lag-1

autocorrelation of the monthly flows is
estimated from the historical data while the
other three correlations are estimated using

equation (10).
5. STUDY RESULTS

RMSE
is parametrically
factor (&) in

previously, the
associated with the MLR
reduced uisng the reduction

As  mentioned

equation (9). In this study, & is increased by
0.1 from 0 which indicates the MLR to 1 which
indicates the perfect forecasting technique. Table
2 presents the GMOVE coefficients ( b, and

¢;) and the corresponding values of the

minimum correlation (0™ y, ), the RMSE

( o.,,), the variance of the seasonal forecast

(of, ), and the correlations of the seasonal

forecasts described in equation (10) when the
RMSE reduction factor is 0.5. Using each set of

min
by, ¢, p Y, F..» 0 s OF, s PQF, » PO F s

prr ,, the ftransition probabilities are

calculated so that the BSDP model derives the
steady state monthly operating policies and
predicts the EAG.

The EAG of the SHS for each value of the
RMSE reduction factor is presented in Table 3
and Figure 2. From Table 3, it is found that
use of the MLR forecasting technique ( = 0) is
expected to result in 2.8 million dollars a year

BEXERREANE



Table 2. The GMOVE coefficients®* and the Relevant Statistics® for the Seasonal

Forecast when the RMSE reduction factor = 0.5.

March April May June
b, -0.3205 -0.1959 -0.1364 -0.2476
Cy 0.9907 0.9568 1.0024 1.2214
o™ Yo Fol 0.9720 0.9828 0.9877 0.9300
O, 350.3 338.2 337.8 646.0
OF,., 1449.9 17976 21328 1634.0
O QF., -0.0386 -0.2334 0.0151 0.4168
O Qi Fi 0.0993 0.4241 0.9132 09131
O F,F,., 09113 0.9010 0.9283

2 the GMOVE coefficients in equation (4), Fy = pep, + 6{Qi—prg) + ¢ Yin1— #v, ).

b

while the perfect forecasting technique ( = 1) is
expected to result in 89 million dollars a year.
The maximum potential benefit associated with

the statistics defined in equations (7), (8), (9), and (10).

9,000,000
8,000,000 1
7,000,000 |
6,000,000 T
5,000,000 |
4,000,000 T
3,000,000 4
2,000,000 T
1,000,000 |

Expected Annual Gain ($)

0

—t

a better forecasting technique is significant,
approximately 59 million dollars which is twice
as large as the EAG of the MLR. For the SHS,

0.4 0.5 0.6 0.7 0.8

RMSE Reduction Factor

0.0 0.1 0.2 0.3 09 1.0

Figure 2. Relationship between the RMSE Reduction Factor and the
Expected Annual Gain for the Skagit Hydropower System.

Table 3. The Expected Aunnal Gain (10°$) as a Function of the RMSE reduction Factor

82 0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0
EAG® 2.843 2.874 2.928 3.040 3.261 3.538 3.794 4.155 4.736 5.37 894
Aabs” 0.03 0.05 0.11 0.22 0.28 0.26 0.36 0.58 0.64 3.56
et 1.10 1.88 3.84 7.27 8.48 7.22 9.51 1400 1342 6634
2§ = the RMSE reduction factor in equation (9).
P EAG - the expected annual gain.
dus = EAG ;| — EAGy and unit is 10° $.
det = (EAG |, — EAGL) 100/ EAG, where k is the k-th discrete value of § and unit is %.
B3R FEEWE 19984 12/] 861




therefore, development of a better forecasting
technique than the MLR may produce a large
potential benefit.

A plot in Figure 2 shows nonlinear
relationship between the reduction facior and the
EAG. Because the slope of the curve can be
interpreted as the incremental increase in the
EAG associated with a unit improvement in the
reduction factor, the convex feature of the curve
suggests that continued improvements in the
forecast accuracy (such as the RMSE) over the
MLR forecasting
gradually greater increases in performance (such
as the RMSE) of the SHS. In other words, as
the forecast SHS

becomes more sensitive to a unit improvement

technique corresponds  to

accuracy increases, the

in the forecast accuracy.
6. CONCLUSIONS

In this made to

investigate a

study, an attempt is

relationship between forecast
accuracy and performance of a reservoir system.
The forecast accuracy is measured as the
RMSE and varied in the GMOVE procedure
while the system performance is measure as the
EAG and estimated by the BSDP model. From
the experimental result for the SHS, the range
of potential benefits associated with use of
better forecasts than the MLR forecasts is
found to be significant. A plot of the EAG
versus the RBRMSE shows the convex curve
which suggests continued improvements in the
forecast accuracy over the MLR forecasting
to gradually greater

technique corresponds

increases in performance of the SHS.
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