
PROC . OF THE SECOND INT . CONE . ON MASSIVELY PARALLEL COMPUTING SYSTEMS (MPCS'96), IEEE Computer Society
Press, Ischia, Italy, May 6-9, 1996, pp . 214-221, ISBN 0-81}36-7600-0 .

A Scalable Implementation of Fault Tolerance for Massively Parallel Systems

I- Introduction

Geert Deconinck', Johan Vounckx', Rudy Lauwereins r , Jorn Altmann% Frank Balbach',
Mario Dal Cin', Joao Gabriel Silva', Henrique Madeira', Bernd Bieker, Erik Maehle
'K .U .Leuven, ESAT-ACCA Laboratory, Kard . Mercierlaan 94, B-3001 Leuven, Belgium

Tel : +32-16-32 1 1 26, Fax: +32-16-32 19 86, Email : Geert.Deconinck@esat.kuleuvern .ac.be
§F.A . Universitiit Erlangen-Ndrnberg, IMMD TTI, MartensstraBe 3, D-91058 Erlangen, Germany
'Universidade de Coimbra, Dep. Eng . Inforirlatica, Pinhal de Marrocos, P-3030 Coimbra, Portugal
Med. Uni . zu Lubeck, Inst . Techn . Inforlrtatik, Ratzeburger Allee 160, D-23538 Lubeck, Germany

Abstract

For massively parallel systems, the probability of cr
s~Yslenc failure clue to u random hardware fault becomes
statistically very significant because of the huge number
of components. Besides, filult injection experiments show
that multiple failures go undetected, leading to incorrect
results. Hence, massively parallel systems reguirc
abilities to tolerate: these faults that will occur. The
FTMPS project presents a scalable implementation to
integrate the different steps to,laull tolerance into existing
HPC systems . On the initial parallel .system only 4017v of
(randomly injected),faulls do not cause the application to
crash or produce wrong results . 1n. the resulting FTMPS
prototype more than. 80%, of these ftiults are correctly
detected and recovered. Resulting overhead for the
application is only between 10 and 20%. Evaluation. of
the different, co-operating fault tolerance modules shows
the,llexibility and the ,.scalability of the approach .

The huge number of components in a massively
parallel system significantly increases the probability ol'a
single component failure . However, the Failure of a single
entity may not cause the whole system to become useless .
Hence, massively parallel systems require fault tolerance ;
i .e . they require the ability to cope with these faults that,
statistically, will occur . ESPRIT project 6731 (FTMPS)
implemented a practical approach to Fault Tolerarrt
Massively Parallel Vsteins [1, 21 . In this paper, the
structure of the developed FTMPS software modules and
tools, their scalable implementation and their important
results are explained . Section I explains the structure of
the FTMPS modules and the target system . Besides, the
fault injection experiments and field data highlight the
motivations . Section 2 elaborates the different fault
tolerance modules : local error detection and system level
diagnosis trigger the system reconfiguration modules . The
application recovery is based on checkpointing and

rollback . Support for the operator is given via a set of
front-end tools . For the different modules, emphasis is on
the scalability of the approach and on the results .
Section 3 proves how the integrated, yet modular and
flexible FTMPS approach significantly improved the fault
tolerance capabilities of massively parallel system : the
resulting prototype is able to handle a significantly larger
percentage (randomly injected) faults correctly than the
initial system .

IA The FTMPS approach

The integrated FTMPS software modules consist of
several building blocks for achieving fault tolerance as
shown in Figure 1 . The cooperating software modules run
on the host and on the different nodes of the massively
parallel target system . Error detection and local diagnosis
are done on every processing element within the parallel
multiprocessor . These modules run concurrently to the
applications . Application recovery is based on
checkpointing and rollback . The application itself starts
the user-driven checkpointing (UDCP) or the hybrid
checkpointing (HCP) . These local diagnosis and
checkpointing modules have counterparts running at the
host : a global diagnosis module and checkpoint.-controller

Figure 1 : FTMPS building blocks .

responsible for the recovery-line management . In
addition, a recovery controller is responsible for the
system reconfiguration after a permanent failure of a
component : possibly the application processes are
retnapped to spare nodes and new routing tables must be
set up . An inter/irce to the operator - the application
controller (AC) - is provided by the operator site
software (OSS) . This OSS keeps track of' the relations of'
failures and applications by means of the error log
controller (ELC) . In addition a statistical tool for the
evaluation of the databases is available as well as a
SYSICtil visualisation tool . These different modules of' the
FTMPS software will be described in more detail in
section 2 .

The entire FTMPS software was set up to he adaptable
to a wide range of massively parallel systems . Therefore,
a unifying system model (USM) was introduced [1, 2] :
systems that can be represented by the USM can be used
as a target for the FTMPS software . The USM is based on
two parts : the data-net (D-net) arid the control-net (C-net) .
The latter one is used by the system software
(initialisation, monitoring, etc .) whereas the former one is
used for the applications . The I)-net is divided into
partitions for the applications (space sharing) . Every
partition consists of' one or more reconfiguration entities
(REs), which are the smallest entities that are used for
reconfiguration . An RE can contain spare processing
elements for replacing a failed node within that RE. If no
(more) spares are available, the entire RE is indicate(] as
being failed and will he replaced by an entire spare RE .

The FTMPS concepts are valid for different massively
parallel systems . The prototypes of the FTMPS modules
have been developed on two different Parsytec machines,
the GCcl-Xplorer base(] on a 2D-grid of T805-transputers,
and the (JC/PP-PowerXplorer based on a 2D-grid of
PowerPC-601 and T805-transputcrs . These massively
parallel systems are connected via a host to the
user/operator environment and the disks .

In this paper, we only consider the 1 -ault tolerance
aspects of the multiprocessor, and consider the host and
disks to be reliable . Two considerations drive this
decision . First, the number of processors (and the
probability of a fault.) is much larger (m the massively
parallel system than on the host . Second, there exist. a lot
of well known fault tolerance methods for uniprocessors,
and to implement stable storage . Alternatively, if no fault-
tolerant host is available, extra fault tolerance measure~
should be applied to the control-net .

The communication concept used within the target
system is synchronous message passing ; the processing
elements are able to handle processes at least at two
priority levels . Target applications come from scientific
number-crunching domains without real time constraints .

1 .2 Fault injection experiment as motivation for
fault tolerance

In the FTMPS project, fault injection has been used to
experimentally evaluate (lie target system . Faults were
injected in the parallel machines used (Parsytec PowerPC
based PowerXplorers) at the beginning and at the end of
the project, so that the improvement brought by the
FTMPS software modules and fools could he measured .
To inject faults a software-based fault injector was

developed, called Xception . It relies on the advanced
debugging facilities, included in the trap handling
subsystem of the PowerPC-601 processor, and works in
two phases, First, it uses the breakpoint mechanism to
interrupt the normal program flow when a user-chosen
trigger condition is reached (for instance, (r certain
address is accessed or a tithe-out has expired) . Second, it
interferes with the execution of one of the next
instructions such that it simulates a fault. i n one of' the
functional units of the processor or main memory . For
instance, to inject a fault in the integer arithmetic and
logic unit (ALU) of the processor, Xception works as
follows . When the trigger condition is reached, it executes
the program in single step mode until an instruction that
uses the ALU is executed (e.g . an addition), and changes
the destination register in a user-specified way . A typical
change is a random hit flip . Then, the program continues
at full speed .

This technique has several advantages . Being totally
software based, it can be easily adapted to many systems,
as long as the processor used has the required built-in
debug capabilities, as all modern processors do . Besides,
the program subjected to the injection is executed at full
speed, and does not have to be changed in any way . For a
detailed description of the injector see [3] .

Of the experiments made at. the beginning of the
project, Table 1 shows the results for two programs :
Matmult, a simple program that multiplies matrices, and
Ising, a bigger program that simulates the spin of'
particles . The outcome of the experiments was classified
according to the following four categories :

Nothing detected, correct results . It corresponds to
those faults that are absorbed by the natural
redundancy of the machine or the application .
Nothing detected, wrong results . The worst situation :
since nothing unusual happens, the user thinks that it
was a good run, but unfortunately the output is wrong .
If the results do not appear "strange" to the user, the
program is not rerun .

"

	

Error cletectecl. The program is aborted with an error
notification, e.g . indicating a memory protection fault .
System crash . The system hangs and has to he
rebooted .

Correct Wrong Detected Crash
Mattnult 23%, 25% 48% 4%I _
Isi11

	

157%

	

6°G~

	

35%

	

,2%
Table 1 : Experiments with a standard machine: 3000
faults for Matmult, 4000 for Ising. All faults were
transient, and consisted of two simultaneous bit flips
affecting one machine instruction.

These results just show that faults indeed have bad
consequences, but. says nothing about the fault rate to
expect in a machine. For that, we can look at statistics I or
the MTBF (mean time between failures) published by
several computing centres that run massively parallel
machines . For instance, the Oak Ridge National
Laboratory (ORNL), in the USA, has published the
following data about two Intel Machines, an XP/S5 with
64 processors and a XP/S 150 with 1024 nodes :

Feb . 1995

	

March 1995

	

Aril 1995
27

	

II

	

70
14

	

_ . 32

	

46
XP/S 5
XP/S 150

Table 2: MTBF (in hours) of some machines at ORNL
(source: http://www.ccs.orni.gov~ .

On one hand, hardware failure rates cannot be directly
derived from these numbers, as they also represent system
crashes that are due to software faults . On the other hand,
as can be seen from Table 1, crashes represent only a
small percentage of fault outcomes . Besides, many
software faults are "IIeisenbilgs" - itt such complex
machines, the re-execution of a program after a software
induced fault is usually successful, due to slight timing
changes. This means that it can be safely stated that. most
of the crashes reported in Table 2, and many more faults
that did not lead to crashes, can be recovered by the
clleckpointing and restart approach followed in (lie
FTMPS Project.

More importantly, this reasoning strongly suggests that
the fault rates to be expected are much higher than the
crash rates reported in Table 2, meaning that the FTMPS
project did indeed address a very serious problem, as the
need for fault tolerance in massively parallel systems is
substantial .

2. The fault tolerance modules

2.1 Error detection

In this section, the different FTMPS modules and their
relations are discussed. Emphasis is oil file scalable
approach and the significant results .

The FTMPS project addressed hardware faults, both
permanent and transient . Still, many software faults that
only occur under special timing conditions are also
tolerated, as long as they are detected by the existing error
detection mechanisms . Indeed, when the affected

programs are restarted from the last recovery-line, those
timing conditions will not, in general, happen again .

2.1 .1 Implementation
Error detection has been implemented in the FTMPS

project under two constraints : no changes to the hardware
of the used machines were allowed and the overall
performance degradation could not exceed 10 to 15°/n . If
only permanent faults would have been taken into
account, then some periodic off-line tests might have
done the job and could easily satisfy those restrictions ;
unfortunately, transient faults are much more frequent
than permanent ones . Furthermore, errors caused by
transient faults can only be detected by concurrent er'r'or
detection techniques . Hence, most error detection
methods chosen in FTMPS provide continuous and
concurrent error detection in order to detect both transient
and permanent errors .

The only error detection methods that arc concurrent
yet low cost are those based on the monitoring of the
behaviour of the system . (The traditional technique of
duplication and comparison is far too expensive.) In the
behaviour-based approach, information describing a
particular trait of the system behaviour (e .g . the program
control flow) is previously collected. At run-time this
information is compared with the actual behaviour
information gathered from the object system in order to
detect deviations from its correct behaviour, i.e . errors .
Other examples of behaviour traits are memory access
behaviour, hardware control signal behaviour,
reasonableness of results, processor instruction set usage
and timing features .

Besides the code used for the detection and correction
of memory errors, six distinct categories of error detection
methods (EDMs) were used in the latest FTMPS
prototype:
+

	

Built-in EDMs : Processor execution model violations
(floating point exceptions, illegal instructions, illegal
privileged instruction use, 1/O segment error,
alignment exception) and operating system level
assertions . These mechanisms do not represent any
overhead for the applications .
Memory _access behaviour: Detection of deviations of
the proper memory access behaviour (either for
instruction fetch or data load and store) . This is
directly implemented by the memory management
unit and does not represent. any overhead for the
applications .

+ Control-Flow monitoring: Assigned Signature
Monitoring (ASM) and Error Capturing Instructions
(ECI).

With ASM the program code is divided by the
compiler or a post-processor in several blocks ; to
each block an ID (signature), that doves not depend

on the block instructions, is assigned . Whenever a
block is entered, that 1D is stored in a fixed place ;
when a block is left, a verification is made that its
TD is still store(] there. Since this method requires
that. code to perform that storage and verification is
added to the application code, it has some
performance and memory overhead .

With ECi, (rap instructions arc inserted in places
where they should never be executed (for instance,
after an unconditional jump) . Only if'something goes
wrong, one of theta will be executed, thus detecting
an error.

Application level I DMs: Application-level assertions
and watchdog timers . The former consist of invariants
the application can verify independently of the
processed data, The latter monitor the system's
behaviour in the time domain by establishing, for each
part of t.hc computation, a time-out that can only he
exceeded in the case of' a fault . These methods depend
cm the programmer's willingness to irriplemcnt them .

"

	

Node__ level

	

watchdog � -,timer :

	

An

	

"I'm

	

alive"
mechanism is implemented as a part of' the system-
level diagnosis layer (sec section 2.2), and consists of
processes that periodically send messages to the
processor's neighbours, to verify that all of' them are

still alive .
"

	

Cofntnunicalion level error detection : 'rhe integrity of
the messages is verified through a CRC (cyclic
redundancy check) .

2.1 .2 Scalability and results
Since all ED]Vis are local to each node, these

mechanisms are totally scalable .
Although 100% detection coverage is not attained, the

integrated VI)Ms come quite close to it . Only with
hardware and operating system designed from scratch we
could have significantly better results . Still, the FTMPS
results are quite an improvement to the initial situation. In
table 3, this improvement is shown for the case of' a
Multigrid Solver, a large parallel program used to solve

stems of linear equations.
Correct Wrong Detected ..rash
41%

	

7°/r,

	

37%

	

1 151/,,
28%, 5'/v 67% lo'x'

Table 3: Experiments with a standard machine with
and without the additional EDMs, running the
multigrid application (3000 faults injected). All faults
were transient, and consisted of bit flips affecting two
random bits in the same 32 bit word of one functional
unit, for the duration of one machine instruction, at a
random time.

To better understand the results it is important to
notice that the Initial standard machine already made a
reasonably good use of memory protection, sornething

s

without F.DMs
with EDMs

2.2 System level fault diagnosis

Figure 2: Main modules of the implemented system-
level diagnosis algorithm.

that does not always happen in massively parallel
systems. 11' that were not the case, the results without the
additional EDMs would have been much worse, since
memory protection is a very effective behaviour based
EDM.

The FTMPS diagnosis algorithm detects and classifies
errors on system level . The first part of it is running on
the host, and implements the highest. level of the
hierarchical diagnosis structure. The second level consists
of the distributed diagnosis of the data-net and the
control-net of the massively parallel system . On the
lowest level there are modules for testing (self-testing and
testing of neighboured processors) . ']'he hierarchical
structure and its distributed approach make the diagnosis
scalable and applicable for massively parallel systems (41 .

2.2 .1 Implementation
On the host, several diagnosis processes are running.

The global diagnosis is started when the system is hooted .
It exchanges information with the other FTMPS modules
- the error log controller (ELQ and the recovery
controller . If an application is started on a certain
partition, a partition-wide diagnosis module is started on
the host . It. communicates with the global diagnosis, and
with the local diagnosis modules on the massively parallel
system; besides, it tests the link connection from the host
to the partition where the application is executed .
Additionally, the global diagnosis has a connection to file
self-checking control-net software, that is running on the
control-net of the massively parallel system .

The aim of the local diagnosis of the data-net, is to
generate a correct diagnostic image in every fault-free
processor of the data-net . 11' this distributed diagnosis is
correct, the fault-free processors can logically disconnect
the faulty units from the system by stopping all
communication with theta.

The structure of the D-net diagnosis is shown in Figure
2. If no fault. event is detected, the algorithm periodically
tests the neighbouring processors . Testing is
accomplished by assigning independent modules to each
tested unit . This close integration of' the error detection
mechanisms into the diagnosis enables (lie event-driven

approach of the diagnosis. If'one of the tests (from section
2.1, or the sending of "I'm alive" messages) detects an
error in a neighbouring processor, the local diagnosis and
the supervisor are informed . The latter activates the
modules responsible for terminating the current
application, for distributing the local test results, and for
processing the diagnostic information. As the algorithm
executes alternatively the local test result distribution and
the syndrome decoding procedures, the diagnostic image
is created gradually, taking every test outcome into
consideration .
The data-net, system-level diagnosis algorithm is

distributed, which makes it applicable in scalable
systems; it is event-driven, c,g., only changes of the
processor slate will be reported . Thus it processes
diagnostic information fast and efficiently, requiring only
a small amount of' communication and computation [5] .
Therefore, the nutrtber of' diagnostic messages is
independent of the number of processors in the system .
Employing this method, the number of tolerable faults
depends only on the properties of the system
interconnection topology .

In order to be able to detect and report errors within
the control-network (self-checking control-net. software),
an error detecting router has been developed on top of the
existing router . This allows to detect communication
errors by checking the generated CRC of' the messages .
Crashed processors of the control-network are detected by
the absence of "I'm alive" messages . Control flow errors
are detected via instructions that are generated by a pre-
processor [61 . When an error is detected, it is reported to
the global diagnosis on the host and all affected
applications are stopped itrtmediately.
Memory
faults
Stuck-at faults

Address-logic
faults
'transition
faults
Loss of data

Processor
faults
Decoding of
registers
ALU

FPtJ

EDC-Logic
faults
Stuck-at faults

No Correction

Wrong
Detection

Link faults

Connection

"1 'o/From
switch
To/From
processor

Table 4: Types of faults covered by the off-line
diagnosis.

These on-line test mechanisms check physically
neighbouring control nodes . Therefore, a small number of
control nodes can be identified where the error could have
occurred . This rough localisation of the faulty
components facilitates the usage of sophisticated off-line
hardware tests for an exact localisation and classification
of the error, because only a small tnumher of components
have to be tested (independent of the sire of the control-
network) . The types of faults that are covered by the off-
line tests implemented are shown in Table 4.

2.2 .2 Scalability and results
Due to the hierarchical approach, the system-level

diagnosis modules easily scale with the sire of the
system . The implementation of' the system-level was
examined, highlighting the advantages and disadvantages,
in [7]. The train results are that the impact of' the
application on the "I'm alive" message testing mechanism
is negligible and that the latency of' the error detection
mechanism by I'm alive" messages can be kept small
due to the small overhead caused by them . The
measurement results show that the testing causes only a
small overhead (less than 0.5°%n if the "I'm alive"
messages are sent each 1 .0 second).

2.3 System reconfiguration

After the error detection or diagnosis modules found a
problem, the recovery controller is responsible for
reconfiguring the massively parallel system and restarting
the applications . The reconfiguration strategy [8J trust
provide each (affected) application with a partition that
contains enough working processors that are able to
communicate with each other. First, the different modules
of the reconfiguration strategy (isolation, re-partitioning,
down-loading, fault tolerant routing and re-mapping) are
presented. Then we discuss their scalahility and present
some overhead measurements .

2.3 .1 Implementation
Fault isolation at partition level is obtained by a double

blocking mechanism. The (re)configuration algorithm
provides this when the partition borders are set up . Only if'
the nodes at both sides of the border are faulty, a message
can cross partition boundaries .

The re-partitioning algorithm provides each affected
application with a new or extended partition containing
enough working processors . Since we work with
massively parallel computers, the complexity of this
algorithm is crucial . The developed algorithm has a
complexity which is polynotrtially proportional to the
number of' allocated partitions, rather than to the number
of processors in the system .
A special loader for injured systems is necessary [9) to

load the application after a failure . This loader is based
upon an adapted flooding broadcast mechanism. The
execution time complexity is kept proportional to the
diameter of the boot network. The data complexity is
proportional to the number of' faults in the partition. Once
the partition is booted, the run-time kernel (with I-I'MI'S
extensions) can be activated.

An important aspect of the run-time kernel is its
routing functions. The fault tolerant routing algorithm
must route messages between any two working nodes of
the partition. Classical routing tables using a look-up

table have a data complexity proportional to the number
of - processors in the partition . In massively parallel
computers this is no longer feasible . Hence we developed
u fault tolerant. touting algorithm with a compact
representation of' the routing information based on
interval routing [10, 11, 12] .

The application should see a (virtually) perfect system .
However, this virtually perfect system is trapped on an
injured one : the re-mapping algorithm assures that the
application is shielded from this by assigning each logical
processor to a physical one .

2.3.2 Scalability
As this reconfiguration strategy is developed for

massively parallel, from the onset scalability was taken
into account . . The double blocking mechanism is local .
Hence it is perfectly scalable . The developed partitioning
algorithm has a complexity of O(P`) with P the number of
allocated partitions . Since P' CC N, the number of nodes
in the system, this is a good result . The fault tolerant
routing algorithm is designed for compactness . The total
amount of routing information per node can be reduced to
O(logN.(F+n)) with F the number of failures and n the
number of dimensions (here 2) . The factor IogN is needed
to uniquely address all N nodes . The time complexity
maximally increases proportionally with the number of'
faults in the partition . The overhead of the remapping
strategy can be divided into three parts, Time overhead,
data overhead and the number of unused processors . The
time overhead (proportional to the number of faults) only
occurs when the communication is set . up . The additional
amount of data is also proportional to (lie number of
faults . Minimising the number of unused processors trust
he traded off against the rcmapping quality .

2.3.3 Results
During normal fault-free operation, no overhead is

introduced for the application_ Since the algorithms have
been designed for scalahility, the time needed for
recovery is minimal : O(P) + O(P") + O(D), with I) the
diameter of the network . The overhead during the nor-nal
operation aficr reconfiguration is caused by the fault.
tolerant routing (fewer channels available, other
communication pattern) and the rernapping algorithm
(other communication pattern) . The exact impact is very
application dependent . Measurements show that, for
typical applications, the overhead remains below 5% .

2.4 Application recovery

Application recovery is based on consistent
checkpointing and rollback [13] . This means that.
periodically, the slate of each process of'Lhc application is
saved to a checkpoint . A set of checkpoints (one per

process) which represents the consistent state of the whole
application is a recovery-fine . Such a recovery-line (valid
set of checkpoint data) is restored after a failure : hence,
the application is rolled back to a fault-free state and
resumes its execution from there .

2.4.1 Implementation
The checkpoint data is saved to the disks . A

checkpoint-control layer manages this checkpoint. data : it
builds recovery-lines from it and removes obsolete files .
Consistency is guaranteed, even if failures are only
detected after a (pre-defined) time, or during recovery .

Three approaches have been developed .
" In the user-driven checkpointing approach, the

programmer is responsible for identifying the position
of the recovery-lines in the code, and for indicating
which data-items contribute to the contents of the
checkpoint . Library functions are available in C and
FORTRAN . The checkpoint data then consists of the
state of each of these clata-items . With the indication
of the recovery-line in the program and the correct
idenl.ification of the contributing data-items, the
programmer assures consistency [14, 15],
In the hybrid checkpointing approach, the programmer
is only responsible for identifying the position of the
recovery-lines in the code . The checkpoint data then
consists of the whole data space of the process .

" In the user-transparent checkpointing approach, the
programmer has the possibility to adjust the
checkpoint interval to a value appropriate for the
application and the massively parallel system . Beside
this, no further action is required . With the set
checkpoint interval, a daemon triggers the
checkpointing ; the application then freezes to assure
consistency . The checkpoint data consists of the whole
data space of the process [161 .
These three checkpointing approaches use the same

layer to send checkpoint data to the disks, and to
determine and retrieve the consistent recovery-line upon
rollback .

2.4 .2 Scalability
The scalability of the application recovery comes from

two aspects . First., the hierarchical checkpoint-control
layer can (automatically or manually) be configured to
optimally exploit the connection to the disks (there is no
on-node disk system in our target hardware) : application
processes send their checkpoint . data over the nearest links
to the nearest disks . Only small control messages are sent
between hierarchically connected controllers to assure
consistency . Second, minimal run-time overhead is
attained by adding some extra programming effort . In the
user-driven approach, only a minimal amount 01'
checkpoint data is saved (only those items defined by the

programmer) ; for the hybrid approach this amount of data
is larger, but the user-involvement is smaller. The user-
transparent approach does not reCluire any uscr-
involvement, but is more hardware dependent . The
programmer or system operator can further influence the
overhead by specifying how often a recovery-line should
he saved.

2.4.3 Results
The user-driven and hybrid approach are integrated in

the FIMPS approach . From the user's point of view, the
time and storage overhead is determined by the
application (i .e . how large is (lie checkpoint data), the
hardware (what is the available bandwidth to the disks)
and the MTBF of the massively parallel system (which
determines an optimal time interval between consecutive
recovery-lines) .
The following figures are representative lot- the user-

driven chcckpointing approach . An example number-
crunching application from file simulation domain is
executed cm 32 node system, which is connected to the
disks via the host at maximal available bandwidth to disk
of 1 MByt.c per second . The checkpoint data size is
slightly more than 1 MByfc per process; on the 32 node
system, this corresponds to 33 MByte per recovery-line. If
the MTBF of the target systern is one day, then the
optimal checkpoint interval is about one hour ; this
corresponds to a time overhead less than I% .

2.5 Operator tools

Within i-IMPS, different support tools have been
developed for the operator. Conceptually, this operator
site sollwarc (OSS) can he divided into art on-line part
and an off-line part . The on-line part consists of the
application controller (AC) and the error log controller
(ELC) . The database tool, statistics and system
visualisation are for off-line usage, i .e . independent froth
the programs running at the target system .

The AC allows the operator to interface with the
I7MPS modules. As such, the operator is able to keep
track of the databases containing the failure list and of the
status of' running applications in the massively parallel
system . Furthermore, the operator can send requests to the
recovery software, e .g . for forcing a rctnapping of an
application that blocks other users .

The ELC is used for the automatic recording 01' Fault
reports that are sent by the diagnosis modules. The
processing of this information is done with the database
tool . It manages the information coming from the
diagnosis and from reports by the operator . This operator
interaction allows to fill in repair reports (which
components are physically replaced) and maintenance
actions (e .g . system shutdowns) . In order to handle t.hc

information stored in the databases, several filters can he
applied for listing different failure types or components .
A statistical tool is used for analysing the database
entries. Important values (e .g . mean-time-to-failure
(MTTF), failure inter-arrival times, etc.) can be extracted.
They can be shown in different ways: bar graphs, Gantt
charts, clc. This allows to analyse the dependability of the
massively parallel system .

Since the presentation of the actual system status is not
easy for massively parallel systems, a visualisation tool
has been developed. This tool provides the operator with
the possibility to view the usage of the system : the
partitions of the target system are displayed with further
information (idle, allocated by user X since time Y, etc .) .
Besides, the hardware status of the system can be
displayed by colouring failed components . A hierarchical
approach has been chosen where the entire system is
displayed in different layers ; the next level can be reached
by a mouse click. An example is given in Figure 3 . A
graphic manager allows to adapt this tool to another target
system . By labelling the components, a link to the entries
in the database can be established .

The OSS tools contained within the FTMPS software
provides the operator of a parallel system with arbitrary
sire with the ability to log failures, visualise the system
status in respect to applications and failures and to show
statistical measures of the system . In addition to this a
possibility to manually start and stop applications is
provided .

3. Conclusion

The different modules described above, have been
integrated in a prototype. Oil this resulting prototype, we
executed another set of' fault. injection experiments (where
random faults are injected at a random time in a random
processor or link unit, analogously to those described in
section 1 .2) . This allowed to measure. the improvement in
dependability of this massively parallel system . In the
resulting FTMPS prototype more than 801/o of the faults
do not . cause the application to crash or produce wrong
results (compared to only 40% of faults on the initial
system). This means that in this case, the FTMPS
.r-

Figure 3: Visualisation tool .

modules are able to detect the errors accurately (by one of'
the EDMs or by the "I'm alive" mechanism after a crash),
the system is properly reconfigured, and the application is
restarted from the most recent, consistent recovery-line .
Resulting overhead for the application is only between 10
and 20"/c . Although this result is far from the 1001/
coverage goal, it is a significant step forward froth the
market point of' view (as shown by the field data of'
existing massively parallel systems) . As this prototype is
not. yet completely stable, we are confident that fine-
tuning the I"TMPS modules will allow uS to attain that
more than 90% of the faults that are being tolerated .
Higher covet-ages would require more extensive hardware
Support .

Acknowledgements
This project is partly Sponsored by ESPRIT project

67 :31 (FTMT'S) : "Fault Tolerance in Massively Parallel
Systems" . Geert Deconinck and Johan Vounckx have a
grant from the Flemish Institute for the Advancement of'
Scientific and Technological Research in Industry (IWT) .
Rudy Lauwereins is a Senior Research Associate of the
Belgian Fund for Scientific Research,

4. References

III

	

G . Deconinck, I . Vounckx, R . Cuyvers, R . Lauwereins, B .
Bicker, H . Willeke, E . Machlc, A . Hein, F . Balbach, J .
Altmann, M . Dal Cin, H . Madeira, J .G . Silva, R . Wagner, G .
Vichbver, "Fault Tolerance in Massively Parallel Systems",
Dansputer Communications, 2(4), Dec . 1994, pp . 241-257 .
121

	

I . Vounckx, G . Deconinck, R . Lauwereins, G . Vichiiver,
R . Wagner, H . Madeira, J.G . Silva, F . Balbach, J . Altmann, B .
Bicker, I1 . Willeke, "The FTMPS-Project : Design and
Implementation of Fault-Tolerance Techniques for Massively
Parallel Systems", Proc . of HPCN-94, Lecture Notes in
Computer Science VOlatnae 797, Springer-Verlag, Munich (D),
April 1994, pp . 401-406 .
131 1 . Carreira, H . Madeira, Joao Gabriel Silva "Xccption :
Software Fault Injection and Monitoring in Processor
Functional Units" Proceedings of the "Fifth IFIP Working
Conference Oil Dependable Computing for Critical Applications
(DCCA-5), Urbana-Cha7rmpaign (IL), USA, Sep . 1995 .
[4] Altmann, .I ., F . Balbach, A . Hein, "An Approach for
Hierarchical System I,evcl Diagnosis of Massively Parallel
Computers Combined with a Simulation-Based Method for
Dependability Analysis", IEEE Ist European Dependable
Computing Conference, pp . 371-385, Berlin (D), Oct, 1994 .
151 Altmann, J ., T . Bartha, A . Pataricza, "An Event-driven
Approach to Multiprocessor Diagnosis," 8th Sytraposium Oil
Microcotraputer and Microprocessor Application, nIP'94, pp .
109-118, Budapest (H), Oct, 1994 .
[6] Hiinig, .1 ., Sol -twarenaethoden zur Riie:kwartsfehler-
bchcbung in Ilochleistungsparallelrechnern mat verteiltern
Speicher, Dissertation, Univ . Erlangen-Niirnhcrg (D), 1994 .
171 Altmann, J ., T . Bartha, A . Pataricza, "On Integrating
Error Detection into a Fault Diagnosis Algorithm for Massively

Parallel Corrapulers," 1st International Computer Performance
and Dependability Symposium, IPDS'95, 1)1) .154-164, Erlangcn
(D), Apr, 1995 .
181 J . Vounckx, G . Deconinck, R . I .auWercins,
Reconfiguration of Massively Parallel Systems, IIPCN Europe
95 conference, Milan (1), May 1995 .
19] J . Vounckx, G . Deconinck, R . Lauwereins, J.A .
Peperslractc, A Loader for Injured Massively Parallel
Networks, Proceedings of the 7th IASTED/ISSM International
Conference on Parallel and Distributed Computing and
Systems, pp . 178-180 , Washington DC.', USA, Oct . 1995 .
[101 J . van Leeuwen, R .B . Tan, "Interval Routing", The
Computer Journal, Vol . 311(4), 1987, pp . 298-307 .
1111 ,I . Vounckx, G . Deconinck, R . Lauwereins, Deadlock-Free
Fault-'Tolerant Wormhole Routing in Mesh based Massively
Parallel Networks, IEEE TCAA Newsletter, Summer-Fall 1994,
pp . 49-54 .
[12] J . Vounckx, G . Deconinck, R . Lauwereins, Minimal
Deadlock-Free Compact Routing in Wormhole Switching based
Injured Meshes, Pror. 2nd keconfigurahle Architectures
Workshop, CA, USA, Apr . 1995 .
[131

	

Y.

	

Tamir,

	

C.H .

	

Sequin,

	

"Error

	

Recovery

	

in
Multicomputers Using Global Checkpoints", 131/7 Ira . Congress
Parallel Processing, Bellaire (MI), Aug . 1984, pp . 32-41 .
114] G . Deconinck, J . Vounckx, R . Lauwereins, "The
Consistent File-Status in a User-Triggered Checkpointing
Approach", Proceedings ParCo'95, Gent (B), Sep . 1995 .
1151 G . Deconinck, J . Vounckx, R, Lauwereins, J .A .
Pepcrstracte "A User-triggered Checkpointing Library for
Computation-intensive Applications", Proceedings Seventh Ins.
Coal. On Parallel and Dislributed Computing and Syswins,
Washington, DC, Oct . 1995, p1) . 321-324 .
[161 B . 13ickcr, G . Deconinck, E . Maefrle, J . Vounckx,
"Reconfiguration and Checkpointing in Massively Parallel
Systetras", Proc, of EDCC-1, Lecture Notes in Computer
Science Volume 852, Spritiger-Verlag, Berlin (D), Oct . 1994,
Pl? . 353-370 .

A Scalable Implementation of Fault Tolerance for Massively Parallel Systems
Geert Deconinck', Johan Vounckx', Rudy Lauwereins', Jorn Altmann', Frank Balbach',
Mario Dal Cin', Joao Gabriel Silva', Henrique Madeira', Bernd Bieker " , Erik Maehle*
'K.U .Leuven, ESAT-ACCA Laboratory, Kard . Mercierlaan 94, B-3001 Leuven, Belgium

Tel : +32-16-32 11 26, Fax: +32-16-32 19 86, Email : Geert.Deconinck@esat .kuleuven.ac .be
T.A. Universitdt Erlangen-Niirnberg, IMMD III, Martensstrafie 3, D-91058 Erlangen, Germany

*Universidade de Coimbra, Dep. Eng. Informatica, Pinhal de Marrocos, P-3030 Coimbra, Portugal
~Med. Uni. zu Lubeck, Inst . Techn . Informatik, Ratzeburger Allee 160, D-23538 Lubeek, Germany

Abstract

For massively parallel systems, the probability of a
system failure due to a random hardware fault becomes
statistically very significant because of the huge number
of components. Besides, fault injection experiments show
that multiple failures go undetected, leading to incorrect
results . Hence, massively parallel systems require
abilities to tolerate these faults that will occur. The
FTMPS project presents a scalable implementation to
integrate the different steps to fault tolerance into existing
HPC systems . On the initial parallel system only 40% of
(randomly injected) faults do not cause the application to
crash or produce wrong results. In the resulting FTMPS
prototype more than 80% of these faults are correctly
detected and recovered. Resulting overhead for the
application is only between 10 and 20%. Evaluation of
the different, co-operating fault tolerance modules shows
theflexibility and the scalability of the approach .

l. . Introduction

The huge number of components in a massively
parallel system significantly increases the probability of a
single component failure . However, the failure of a single
entity may not cause the whole system to become useless .
Hence, massively parallel systems require fault tolerance ;
i .e . they require the ability to cope with these faults that,
statistically, will occur . ESPRIT project 6731 (FTMPS)
implemented a practical approach to Fault Tolerant
Massively Parallel Systems [1, 21, In this paper, the
structure of the developed FTMPS software modules and
tools, their scalable implementation and their important
results are explained . Section 1 explains the structure of
the FTMPS modules and the target system . Besides, the
fault injection experiments and field data highlight the
motivations . Section 2 elaborates the different fault
tolerance modules : local error detection and system level
diagnosis trigger the system reconfiguration modules . The

0-8].86-7600-0/96 $5.00 © 1996 IEEE

application recovery is based on checkpointing and
rollback . Support for the operator is given via a set of
front-end tools . For the different modules, emphasis is on
the scalability of the approach and on the results .
Section 3 proves how the integrated, yet modular and
flexible FTMPS approach significantly improved the fault
tolerance capabilities of massively parallel system : the
resulting prototype is able to handle a significantly larger
percentage (randomly injected) faults correctly than the
initial system .

1 .1 The FTMPS approach

The integrated FTMPS software modules consist of
several building blocks for achieving fault tolerance as
shown in Figure 1 . The cooperating software modules run
on the host and on the different nodes of the massively
parallel target system . Error detection and local diagnosis
are done on every processing element within the parallel
multiprocessor. These modules run concurrently to the
applications, Application recovery is based on
checkpointing and rollback . The application itself starts
the user-driven checkpointing (UDCP) or the hybrid
checkpointing (HCP) . These local diagnosis and
checkpointing modules have counterparts running at the

Figure 1 : FTMPS building blocks .

host : a global diagnosis module and checkpoint-controller
responsible for the recovery-line management . In
addition, a recovery controller is responsible for the
system reconfiguration after a permanent failure of a
component : possibly the application processes are
remapped to spare nodes and new routing tables must be
set up . An interface to the operator - the application
controller (AC) - is provided by the operator site
software (OSS). This OSS keeps track of the relations of
failures and applications by means of the error log
controller (ELC) . In addition a statistical tool for the
evaluation of the databases is available as well as a
system visualisation tool . These different modules of the
FTMPS software will be described in more detail in
section 2 .

The entire FTMPS software was set up to be adaptable
to a wide range of massively parallel systems . Therefore,
a unifying system model (USM) was introduced [1, 2] :
systems that can be represented by the USM can be used
as a target for the FTMPS software . The USM is based on
two parts : the data-net (D-net) and the control-net (C-net) .
The latter one is used by the system software
(initialisation, monitoring, etc .) whereas the former one is
used for the applications . The D-net is divided into
partitions for the applications (space sharing) . Every
partition consists of one or more reconfiguration entities
(REs), which are the smallest entities that are used for
reconfiguration . An RE can contain spare processing
elements for replacing a failed node within that RE. If no
(more) spares are available, the entire RE is indicated as
being failed and will be replaced by an entire spare RE,

The FTMPS concepts are valid for different massively
parallel systems . The prototypes of the FTMPS modules
have been developed on two different Parsytec machines,
the GCcl-Xplorer based on a 2D-grid of T805-transputers,
and the GC/PP-PowcrXplorcr based on a 2D-grid of
PowerPC-601 and T805-transputers . These massively
parallel systems are connected via a host to the
user/operator environment and the disks .

In this paper, we only consider the fault tolerance
aspects of the multiprocessor, and consider the host and
disks to be reliable . Two considerations drive this
decision . First, the number of processors (and the
probability of a fault) is much larger on the massively
parallel system than on the host . Second, there exist a lot
of well known fault tolerance methods for uniprocessors,
and to implement stable storage . Alternatively, if no fault-
tolerant host is available, extra fault tolerance measures
should be applied to the control-net .

The communication concept used within the target
system is synchronous message passing ; the processing
elements are able to handle processes at least at two
priority levels . Target applications come from scientific
number-crunching domains without real time constraints .

21 5

1 .2 Fault injection experiment as motivation for
fault tolerance

In the FTMPS project, fault injection has been used to
experimentally evaluate the target system . Faults were
injected in the parallel machines used (Parsytec PowerPC
based PowerXplorers) at the beginning and at the end of
the project, so that the improvement brought by the
FTMPS software modules and tools could be measured .
To inject faults a software-based fault injector was

developed, called Xception . It relies on the advanced
debugging facilities, included in the trap handling
subsystem of the PowerPC-601 processor, and works in
two phases. First, it uses the breakpoint mechanists to
interrupt the normal program flow when a user-chosen
trigger condition is reached (for instance, a certain
address is accessed or a time-out has expired) . Second, it
interferes with the execution of one of the next
instructions such that it simulates a fault in one of the
functional units of the processor or main memory . For
instance, to inject a fault in the integer arithmetic and
logic unit (ALU) of the processor, Xception works as
follows . When the trigger condition is reached, it executes
the program in single step mode until an instruction that
uses the ALU is executed (e.g . an addition), and changes
the destination register in a user-specified way . A typical
change is a random bit flip, Then, the program continues
at full speed .

This technique has several advantages . Being totally
software based, it can be easily adapted to many systems,
as long as the processor used has the required built-in
debug capabilities, as all modern processors do . Besides,
the program subjected to the injection is executed at full
speed, and does not have to be changed in any way . For a
detailed description of the injector see [3] .

Of the experiments made at the beginning of the
project, Table 1 shows the results for two programs:
Matmult, a simple program that multiplies matrices, and
Ising, a bigger program that Simulates the spin of
particles . The outcome of the experiments was classified
according to the following four categories :
" Nothing detected, correct results . It corresponds to

those faults that are absorbed by the natural
redundancy of the machine or the application .

" Nothing detected, wrong results . The worst situation :
since nothing unusual happens, the user thinks that it
was a good run, but unfortunately the output is wrong.
If the results do not appear "strange" to the user, the
program is not rerun .

"

	

Error detected . The program is aborted with an error
notification, e.g . indicating a memory protection fault .
System crash . The system hangs and has to be
rebooted .

Correct Wrong Detected Crash
Matmult 23%n 25% 48% 4%
Isin 57% 6% 35% 2%a

Table 1 : Experiments with a standard machine: 3000
faults for Matmult, 4000 for Ising. All faults were
transient, and consisted of two simultaneous bit flips
affecting one machine instruction.

These results just show that faults indeed have bad
consequences, but says nothing about the fault rate to
expect in a machine . For that, we can look at statistics for
the MTBF (mean time between failures) published by
several computing centres that run massively parallel
machines . For instance, the Oak Ridge National
Laboratory (ORNL), in the USA, has published the
following data about two Intel Machines, an XP/S5 with
64 processors and a XP/S 150 with 1024 nodes :

Feb . 1995

	

March 1995

	

Aril 1995
27

	

11

	

70
14

	

32 ,..

	

46
Table 2: MTBF (in hours) of some machines at ORN

_
L

(source: http://Www.ccs.orni.gov/) .
On one hand, hardware failure rates cannot be directly

derived from these numbers, as they also represent system
crashes that are due to software faults . On the other hand,
as can be seen from Table 1, crashes represent only a
small percentage of fault outcomes . Besides, many
software faults are "Heisenbugs" -- in such complex
machines, the re-execution of a program after a software
induced fault is usually successful, due to slight timing
changes . This means that it can be safely stated that most
of the crashes reported in Table 2, and many more faults
that did not lead to crashes, can be recovered by the
checkpointing and restart approach followed in the
FTMPS project .

More importantly, this reasoning strongly suggests that
the fault rates to be expected are much higher than the
crash rates reported in Table 2, meaning that the FTMPS
project did indeed address a very serious problem, as the
need for fault tolerance in massively parallel systems is
substantial .

XP/S S
XP/S 1S0

2. The fault tolerance modules

2.1 Error detection

In this section, the different FTMPS modules and their
relations are discussed . Emphasis is on the scalable
approach and the significant results,

The FTMPS project addressed hardware faults, both
permanent and transient . Still, many software faults that
only occur under special timing conditions are also
tolerated, as long as they are detected by the existing error
detection mechanisms . Indeed, when the affected

216

programs are restarted from the last recovery-line, those
timing conditions will not, in general, happen again .

2.1 .1 Implementation
Error detection has been implemented in the FTMPS

project under two constraints : no changes to the hardware
of the used machines were allowed and the overall
performance degradation could not exceed 10 to 15% . If
only permanent faults would have been taken into
account, then some periodic off-line tests might have
done the job and could easily satisfy those restrictions ;
unfortunately, transient faults are much more frequent
than permanent ones . Furthermore, errors caused by
transient faults can only be detected by concurrent error
detection techniques . Hence, most error detection
methods chosen in FTMPS provide continuous and
concurrent error detection in order to detect both transient
and permanent errors .

The only error detection methods that are concurrent
yet low cost are those based on the monitoring of the
behaviour of the system . (The traditional technique of
duplication and comparison is far too expensive .) In the
behaviour-based approach, information describing a
particular trait of the system behaviour (e .g . the program
control flow) is previously collected . At run-time this
information is compared with the actual behaviour
information gathered from the object system in order to
detect deviations from its correct behaviour, i .e . errors .
Other examples of behaviour traits are memory access
behaviour, hardware control signal behaviour,
reasonableness of results, processor instruction set usage
and timing features .

Besides the code used for the detection and correction
of memory errors, six distinct categories of error detection
methods (EDMs) were used in the latest FTMPS
prototype :

uilt-i

	

D

	

s: Processor execution model violations
(floating point exceptions, illegal instructions, illegal
privileged instruction use, UO segment error,
alignment exception) and operating system level
assertions . These mechanisms do not represent any
overhead for the applications .
Memo

	

access behaviour Detection of deviations of
the proper memory access behaviour (either for
instruction fetch or data load and store), This is
directly implemented by the memory management
unit and does not represent any overhead for the
applications .

"

	

ControI

	

ow

	

moni orin

	

Assigned

	

Signature
Monitoring (ASM) and Error Capturing Instructions
(ECI) .

With ASM the program code is divided by the
compiler or a post-processor in several blocks ; to
each block an ID (signature), that does not depend

2 .1 . .2 Scalability and results
Since all EDMS are local

mechanisms are totally scalable .
Although 100% detection coverage is not attained, the

integrated EDMS come quite close to it . Only with
hardware and operating system designed from scratch we
could have significantly better results . Still, the FTMPS
results are quitcan improvement to the initial situation . In

Wrong Detected Crash
7% 37% 15%
5% 67% 0%

Table 3 this improvement is shown for the case of a
Multigrid Solver, a large parallel program used to solve
systems of l inear equations .

Correct Wrong Detected Crash
41% 7% 37% 15%

S% C7%, 017,

on the block instructions, is assigned . Whenever a
block is entered, that ID is stored in a fixed place ;
when a block is left, a verification is made that its
ID is still stored there . Since this method requires
that code to perform that storage and verification is
added to the application code, it has some
performance and memory overhead.

With ECI, trap instructions are inserted in places
where they should never be executed (for instance,
after an unconditional jump). Only if something goes
wrong, one of them will be executed, thus detecting
an error.

Application level EDMS: Application-level assertions
and watchdog timers . The former consist of invariants
the application can verify independently of the
processed data . The latter monitor the system's
behaviour in the time domain by establishing, for each
part of the computation, a time-out that can only be
exceeded in the case of a fault . These methods depend
on the programmer's willingness to implement them .
Node level watchdog timer : An "I'm alive"
mechanism is implemented as a part of the system-
level diagnosis layer (see section 2.2), and consists of
processes that periodically send messages to the
processor's neighbours, to verify that all of them arc
still alive .
Communication level error detection The integrity of
the messages is verified through a CRC (cyclic
redundancy check) .

without EDMS
with EDMS

without EDMS
with EDMS

	

28%
Table 3: Experiments with a standard machine with
and without the additional EDMS, running the
multigrid application (3000 faults injected). All faults
were transient, and consisted of bit flips affecting two
random bits in the same 32 bit word of one functional
unit, for the duration of one machine instruction, at a
random time.

Correct
41%
28%

to each node, these

217

Figure 2: Main modules of the implemented System-
level diagnosis algorithm.
To better understand the results it is important to

notice that the initial standard machine already made a
reasonably good use of memory protection, something
that does not always happen in massively parallel
systems . If that were not the case, the results without the
additional EDMS would have been much worse, since
memory protection is a very effective behaviour based
EDM.

2.2 System level fault diagnosis

The F'rMPS diagnosis algorithm detects and classifies
errors on system level . The first part of it is running on
the host, and implements the highest level of the
hierarchical diagnosis structure . The second level consists
of the distributed diagnosis of the data-net and the
control-net of the massively parallel system . On the
lowest level there are modules for testing (self-testing and
testing of neighboured processors), The hierarchical
structure and its distributed approach make the diagnosis
scalable and applicable for massively parallel systems [4] .
2 .2 .1 Implementation

On the host, several diagnosis processes are running .
The global diagnosis is started when the system is booted .
It exchanges information with the other FTMPS modules
- the error log controller (ELC) and the recovery
controller. If an application is started on a certain
partition, a partition-wide diagnosis module is started on
the host . It communicates with the global diagnosis, and
with the local diagnosis modules on the massively parallel
system ; besides, it tests the link connection from the host
to the partition where the application is executed .
Additionally, the global diagnosis has a connection to the
self-checking control-net software, that is running on the
control-net of the massively parallel system .

The aim of the local diagnosis of the data-net, is to
generate a correct diagnostic image in every fault-free
processor of the data-net, If this distributed diagnosis is
correct, the fault-free processors can logically disconnect
the faulty units from the systern by stopping all
communication with them.

The structure of the D-net diagnosis is shown in Figure
2 . If no fault event is detected, the algorithm periodically
tests the neighbouring processors . Testing is

accomplished by assigning independent modules to each
tested unit . This close integration of the error detection
mechanisms into the diagnosis enables the event-driven
approach of the diagnosis . If one of the tests (from section
2.1, or the sending of "I'm alive" messages) detects an
error in a neighbouring processor, the local diagnosis and
the supervisor are informed . The latter activates the
modules responsible for terminating the current
application, for distributing the local test results, and for
processing the diagnostic information . As the algorithm
executes alternatively the local test result distribution and
the syndrome decoding procedures, the diagnostic image
is created gradually, taking every test outcome into
consideration .

The data-net, system-level diagnosis algorithm is
distributed, which makes it applicable in scalable
systems ; it is event-driven, e.g ., only changes of the
processor state will be reported . Thus it processes
diagnostic information fast and efficiently, requiring only
a small amount of communication and computation [5] .
Therefore, the number of diagnostic messages is
independent of the number of processors in the system .
Employing this method, the number of tolerable faults
depends only on the properties of the system
interconnection topology .

In order to be able to detect and report errors within
the control-network (self-checking control-net software),
an error detecting router has been developed on top of the
existing router . This allows to detect communication
errors by checking the generated CRC of the messages .
Crashed processors of the control-network are detected by
the absence of "I'm alive" messages. Control flow errors
are detected via instructions that are generated by a pre-
processor [G] . When an error is detected, it is reported to
the global diagnosis on the host and all affected
applications are stopped immediately .
Memory
faults
Stuck-at faults

Address-logic
faults
Transition
faults
Loss of data

Processor
faults
Decoding of
registers
ALU

FPU

EDC-Logic
faults
Stuck-at faults

No Correction

Wrong
Detection

Link faults

Connection

To/From
switch
To/From
processor

Table 4: Types of faults covered by the off-line
diagnosis .

These on-line test mechanisms check physically
neighbouring control nodes . Therefore, a small number of
control nodes can be identified where the error could have
occurred . This rough localisation of the faulty
components facilitates the usage of sophisticated off-line
hardware tests for an exact localisation and classification
of the error, because only a small number of components

218

have to be tested (independent of the size of the control-
network) . The types of faults that are covered by the off-
line tests implemented are shown in Table 4 .

2.2.2 Scalability and results
Due to the hierarchical approach, the system-level

diagnosis modules easily scale with the size of the
system . The implementation of the system-level was
examined, highlighting the advantages and disadvantages,
in [7], The main results are that the impact of the
application on the "I'm alive" message testing mechanism
is negligible and that the latency of the error detection
mechanism by "I'm alive" messages can be kept small
due to the small overhead caused by them . -The
measurement results show that the testing causes only a
small overhead (less than 0.5% if the "I'm alive"
messages are sent each 1 .0 second) .

2.3 System reconfiguration

After the error detection or diagnosis modules found a
problem, the recovery controller is responsible for
reconfiguring the massively parallel system and restarting
the applications . The reconfiguration strategy [8] must
provide each (affected) application with a partition that
contains enough working processors that are able to
communicate with each other . First, the different modules
of the reconfiguration strategy (isolation, re-partitioning,
down-loading, fault tolerant routing and re-mapping) are
presented . Then we discuss their scalability and present
some overhead measurements.

2.3.1 Implementation
Fault isolation at partition level is obtained by a double

blocking mechanism . The (re)configuration algorithm
provides this when the partition borders are set up . Only if
the nodes at both sides of the border are faulty, a message
can cross partition boundaries .

The repartitioning algorithm provides each affected
application with a new or extended partition containing
enough working processors . Since we work with
massively parallel computers, the complexity of this
algorithm is crucial . The developed algorithm has a
complexity which is polynomially proportional to the
number of allocated partitions, rather than to the number
of processors in the system .
A special loader for injured systems is necessary [9] to

load the application after a failure . This loader is based
upon an adapted flooding broadcast mechanism . The
execution time complexity is kept proportional to the
diameter of the boot network . The data complexity is
proportional to the number of faults in the partition . Once
the partition is booted, the run-tune kernel (with FTMI'S
extensions) can be activated .

An important aspect of the run-time kernel is its
routing functions . The fault tolerant routing algorithm
must route messages between any two working nodes of
the partition . Classical routing tables using a look-up
table have a data complexity proportional to the number
of processors in the partition . In massively parallel
computers this is no longer feasible . Hence we developed
a fault tolerant routing algorithm with a compact
representation of the routing information based on
interval routing [10, 11, 12] .

The application should see a (virtually) perfect system .
However, this virtually perfect system is mapped on an
injured one : the re-mapping algorithm assures that the
application is shielded from this by assigning each logical
processor to a physical one .

2.3.2 Scalability
As this reconfiguration strategy is developed for

massively parallel, from the onset Scalability was taken
into account . The double blocking mechanism is local .
Hence it is perfectly scalable . Tile developed partitioning
algorithm has a complexity of O(P) with P the number of
allocated partitions . Since P2 c< N, the number of nodes
in the system, this is a good result . The fault tolerant
routing algorithm is designed for compactness . The total
amount of routing information per node can be reduced to
O(logN.(F+n)) with F the number of failures and n the
number of dimensions (here 2) . The factor IogN is needed
to uniquely address all N nodes . The time complexity
maximally increases proportionally with the number of
faults in the partition . The overhead of the remapping
strategy can be divided into three parts . Time overhead,
data overhead and the number of unused processors . The
time overhead (proportional to the number of faults) only
occurs when the communication is set up . The additional
amount of data is also proportional to the number of
faults . Minimising the number of unused processors must
be traded off against the remapping quality .

2.3.3 Results
During normal fault-free operation, no overhead is

introduced for the application . Since the algorithms have
been designed for Scalability, the time needed for
recovery is minimal : O(1'-) + O(P") + O(D), with D the
diameter of the network . The overhead during the normal
operation after reconfiguration is caused by the fault
tolerant routing (fewer channels available, other
communication pattern) and the remapping algorithm
(other communication pattern) . The exact impact is very
application dependent . Measurements show that, for
typical applications, the overhead remains below 5% .

219

2.4 Application recovery

Application recovery is based on consistent
checkpointing and rollback [13] . This means that
periodically, the state of each process of the application is
saved to a checkpoint . A set of checkpoints (one per
process) which represents the consistent. state of the whole
application is a recovery-line . Such a recovery-line (valid
set of checkpoint data) is restored after a failure : hence,
the application is rolled back to a fault-free state and
resumes its execution from there .

2.4 .1 Implementation
The checkpoint data is saved to the disks . A

checkpoint-control layer manages this checkpoint data : it
builds recovery-lines from it and removes obsolete files .
Consistency is guaranteed, even if failures are only
detected after a (pre-defined) time, or during recovery .

Three approaches have been developed .
In the user-driven checkpointing approach, the
programmer is responsible for identifying the position
of the recovery-lines in the code, and for indicating
which data-items contribute to the contents of the
checkpoint . Library functions are available in C and
FORTRAN . The checkpoint data then consists of the
state of each of these data-items . With the indication
of the recovery-line in the program and the correct
identification of the contributing data-items, the
programmer assures consistency [14, 15] .
In the hybrid checkpointing approach, the programmer
is only responsible for identifying the position of the
recovery-lines in the code . The checkpoint data then
consists of the whole data space of the process .
In the user-transparent checkpointing approach, the
programmer has the possibility to adjust the
checkpoint interval to a value appropriate for the
application and the massively parallel system . Beside
this, no further action is required . With the set
checkpoint interval, a daemon triggers the
checkpointing ; the application then freezes to assure
consistency . The checkpoint data consists of the whole
data space of the process [16] .
These three checkpointing approaches use the same

layer to send checkpoint data to the disks, and to
determine and retrieve the consistent recovery-line upon
rollback .

2.4.2 Scalability
The Scalability of the application recovery comes from

two aspects . First, the hierarchical checkpoint-control
layer can (automatically or manually) be configured to
optimally exploit the connection to the disks (there is no
on-node disk system in our target hardware) : application
processes send their checkpoint data over the nearest links

to the nearest disks . Only small control messages are sent
between hierarchically connected controllers to assure
consistency . Second, minimal run-time overhead is
attained by adding sorne extra programming effort . In the
user-driven approach, only a minimal amount of
checkpoint data is saved (only those items defined by the
programmer) ; for the hybrid approach this amount of data
is larger, but the user-involvement is smaller. The user-
transparent approach does not require any user-
involvement, but is more hardware dependent. The
programmer or system operator can further influence the
overhead by specifying how often a recovery-line should
be saved .

2 .4 .3 Results
The user-driven and hybrid approach are integrated in

the FTMPS approach . From the user's point of view, the
time and storage overhead is determined by the
application (i .c . how large is the checkpoint data), the
hardware (what is the available bandwidth to the disks)
and the MTBF of the massively parallel system (which
determines an optimal time interval between consecutive
recovery-lines) .

The following figures arc representative for the user-
driven checkpointing approach . An example number-
crunching application from the simulation domain is
executed on 32 node system, which is connected to the
disks via the host at maximal available bandwidth to disk
of 1 MByte per second . The checkpoint data size is
slightly more than 1 MByte per process ; on the 32 node
system, this corresponds to 33 MByte per recovery-line . If
the MTBF of the target system is one day, then the
optimal checkpoint interval is about one hour ; this
corresponds to a time overhead less than I%.

2.5 Operator tools

Within FTMPS, different support tools have been
developed for the operator . Conceptually, this operator
site software (OSS) can be divided into an on-line part
and an off-line part . The on-line part consists of the
application controller (AC) and the error log controller
(ELC) . The database tool, statistics and system
visualisation are for off-line usage, i .e . independent from
the programs running at the target system .

The AC allows the operator to interface with the
FTMPS modules . As such, the operator is able to keep
track of the databases containing the failure list and of the
status of running applications in the massively parallel
system . Furthermore, the operator can send requests to the
recovery software, e.g . for forcing a rcmapping of an
application that blocks other users .

The ELC is used for the automatic recording of fault
reports that are sent by the diagnosis modules, The

220

processing of this information is done with the database
tool . It manages the information coming from thediagnosis and from reports by the operator . This operator
interaction allows to fill in repair reports (which
components are physically replaced) and maintenance
actions (e.g . system shutdowns) . In order to handle the
information stored in the databases, several filters can beapplied for listing different failure types or components,A statistical tool is used for analysing the database
entries . Important values (e.g . mean-time-to-failure
(MTTF), failure inter-arrival times, etc .) can be extracted .They can be shown in different ways : bar graphs, Gantt
charts, etc . This allows to analyse the dependability of the
massively parallel system .

Since the presentation of the actual system status is not
easy for massively parallel systems, a visualisation toolhas been developed . This tool provides the operator withthe possibility to view the usage of the system : the
partitions of the target system are displayed with further
information (idle, allocated by user X since time Y, etc .) .
Besides, the hardware status of the system can be
displayed by colouring failed components . A hierarchical
approach has been chosen where the entire system is
displayed in different layers ; the next level can be reached
by a mouse click . An example is given in Figure 3 . A
graphic manager allows to adapt this tool to another target
system . By labelling the components, a link to the entries
in the database can be established .

The OSS tools contained within the FTMPS software
provides the operator of a parallel system with arbitrary
size with the ability to log failures, visualise the system
status in respect to applications and failures and to show
statistical measures of the system . In addition to this a
possibility to manually start and stop applications is
provided .

3. Conclusion
The different modules described above, have been

integrated in a prototype . On this resulting prototype, we
executed another set of fault injection experiments (where
random faults are injected at a random time in a random
processor or link unit, analogously to those described in

Figure 3 : Visualisation tool .

section 1 .2) . This allowed to measure the improvement in
dependability of this massively parallel system . In the
resulting FTMPS prototype more than 80% of the faults
do not cause the application to crash or produce wrong
results (compared to only 40% of faults on the initial
system) . This means that in this case, the FTMPS
modules are able to detect the errors accurately (by one of
the EDMs or by the "I'm alive" mechanism after a crash),
the system is properly reconfigured, and the application is
restarted from the most recent, consistent recovery-line .
Resulting overhead for the application is only between 10
and 20%. Although this result is far from the 100%
coverage goal, it is a significant step forward from the
market point of view (as shown by the field data of
existing massively parallel systems) . As this prototype is
not yet completely stable, we are confident that fine-
tuning the FTMPS modules will allow us to attain that
more than 90%n of the faults that are being tolerated .
Higher coverages would require more extensive hardware
support .

Acknowledgements
This project is partly sponsored by ESPRIT project

6731 (FTMPS) : "Fault Tolerance in Massively Parallel
Systems" . Geert Deconinck and Johan Vounckx have a
grant from the Flemish Institute for the Advancement of
Scientific and Technological Research in Industry (IWT) .
Rudy Lauwereins is a Senior Research Associate of the
Belgian Fund for Scientific Research .

4. References

[11

	

G. Deconinck, J . Vounckx, R . Cuyvers, R . Lauwereins, B .
Bieker, H . Willcke, E . Maehle, A . Hein, F . Balbach, 1 .
Altmann, M . Dal Cin, H . Madeira, J.G . Silva, R . Wagner, G .
Vieh6ver, "Fault Tolerance in Massively Parallel Systems",
Transputer Communications, 2(4), Dec . 1994, pp . 241-257 .
[21

	

J . Vounckx, G . Deconinck, R . Lauwereins, G . Viehbver,
R . Wagner, H . Madeira, J.G . Silva, F. Balbach, J . Altmann, B .
Bieker, H . Willcke, "The FTMPS-Project : Design and
Implementation of Fault-Tolerance Techniques for Massively
Parallel Systems", Proc, of HPCN-94, Lecture Notes in
Computer Science Volume 797, Springer-Verlag, Munich (D),
April 1994, pp . 401-406 .
[31 J . Carreira, H . Madeira, Joao Gabriel Silva "Xception :
Software Fault Injection and Monitoring in Processor
Functional Units" Proceedings of the "Fifth IFIP Working
Conference on Dependable Computing for Critical Applications
(DCCA-5), Urbana-Champaign (IL), USA, Sep . 1995 .
[4] Altmann, J ., F . Balbach, A . Hein, "An Approach for
Hierarchical System Level Diagnosis of Massively Parallel
Computers Combined with a Simulation-Based Method for
Dependability Analysis", IEEE Ist European Dependable
Computing Conference, pp . 371-385, Berlin (D), Oct, 1994 .
[5] Altmann, J ., T . Bartha, A, Pataricza, "An Event-driven
Approach to Multiprocessor Diagnosis," 8th Symposium on

22 1

Microcomputer and Microprocessor Application, mP'94, pp .
109-118, Budapest (H), Oct . 1994 .
[61 Hbnig, J ., Softwaremethoden zur Rdckwartsfehler-
behebung in Hochleistungsparallelrechnem mit verteiltem
Speicher, Dissertation, Univ . Erlangen-Ntimberg (D), 1994 .
[7] Altmann, J ., T . Bartha, A . Pataricza, "On Integrating
Error Detection into a Fault Diagnosis Algorithm for Massively
Parallel Computers," 1st International Computer Performance
and Dependability Symposium, IPDS'95, pp.154-164, Erlangen
(D), Apr . 1995 .
[8] J . Vounckx, G, Deconinck, R . Lauwereins,
Reconfiguration of Massively Parallel Systems, HPCN Europe
95 conference, Milan (I), May 1995 .
[9] J . Vounckx, G . Deconinck, R . Lauwereins, J.A .
Peperstraete, A Loader for Injured Massively Parallel
Networks, Proceedings of the 7th IASTED/ISSM International
Conference on Parallel and Distributed Computing and
Systems, pp . 178-180, Washington DC, USA, Oct . 1995 .
[101 J . van Lecuwen, R .B . Tan, "Interval Routing", The
Computer Journal, Vol . 30(4), 1987, pp . 298-307 .
111] J . Vounckx, G . Deconinck, R. Lauwereins, Deadlock-Free
Fault-Tolerant Wormhole Routing in Mesh based Massively
Parallel Networks, IEEE TCAA Newsletter, Summer-Fall 1994,
pp . 49-54 .
[12] J . Vounckx, G . Deconinck, R . Lauwereins, Minimal
Deadlock-Free Compact Routing in Wormhole Switching based
Injured Meshes, Proc . 2nd Reconfigurable Architectures
Workshop, CA, USA, Apr. 1995 .
[131 Y . Tamir, C.H . Sequin, "Error Recovery in
Multicomputers Using Global Checkpoints", 13th Int . Congress
Parallel Processing, Bellaire (MI), Aug . 1984, pp . 32-41 .
[14] G . Deconinck, J . Vounckx, R . Lauwereins, "The
Consistent File-Status in a User-Triggered Checkpointing
Approach", Proceedings ParCo'95, Gent (B), Sep . 1995 .
[15] G . Deconinck, J . Vounckx, R . Lauwereins, J.A .
Peperstractc "A User-triggered Checkpointing Library for
Computation-intensive Applications", Proceedings Seventh Int .
Conf. On Parallel and Distributed Computing and Systents,
Washington, DC, Oct . 1995, pp . 321-324,
[16] B . Bieker, G . Deconinck, E . Maehle, J . Vounckx,
"Reconfiguration and Checkpointing in Massively Parallel
Systems", Proc . of EDCC-1, Lecture Notes in Computer
Science Volume 852, Springer-Verlag, Berlin (D), Oct . 1994,
pp . 353-370 .

Second International Conference on
Massively Parallel Computing Systems

Convened by :

	

In cooperation with :

MPCS'96

Proceedings of the

Istituto di Ricerca sui Sisterni Informatici Paralleli
Istituto di Fisica Cosmica e Tecnologie Relative

MILE

®COMPUTER SOCIETY
50YEARS 017 SERVICE -1946-1996

Ischia, Italy
May 6 - 9, 1996

THE INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS, INC .

EUROMICRO

Copyright O 1996 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved .

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source . Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume
that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to : IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331 .

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page . They
reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and
without change . Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society Press, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Press Order Number PR07600
Library of Congress Number 96-79508

ISBN 0-8186-7600-0 (paper)
Microfiche ISBN 0-8186-7602-7

IEEE Computer Society Press
Customer Service Center
10662 Los Vaqueros Circle
P.O . Box 3014
Los Alamitos, CA 90720-1314
Tel: +1-714-821-8380
Fax: +1-714-821-4641
Email: cs.books@computcr.org

IEEE Computer Society Press
10662 Los Vaqueros Circle

P.O . Box 3014
Los Alamitos, CA 90720-1264

Additional copies maybe orderedfrom:

IEEE Computer Society
13, Avenue de I'Aquilon
B-1200 Brussels
BELGIUM
Tel: +32-2-770-2198
Fax : +32-2-770-8505

Editorial production by Regina Sipple and Penny Storms

Cover by Joseph Daigle/Studio Productions

Printed in the United States of America by KNI, Inc .

IEEE Computer Society
Ooshima Building
2-19-1 Minami-Aoyama
Minato-ku, Tokyo 107
JAPAN
Tel: +81-3-3408-3118
Fax: +81-3-3408-3553

The Institute of Electrical and Electronics Engineers, Inc.

