Signalprocessing Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

—

I Kisun You, Jike Chong, Youngmin Yi, Ekaterina Gonina,

Christopher J. Hughes, Yen-Kuang Chen, Wonyong Sung, and Kurt Keutzer

Parallel Scalability
in Speech Recognition

Inference engines in large vocabulary

continuous speech recognition

arallel scalability allows an application
to efficiently utilize an increasing num-
ber of processing elements. In this
article, we explore a design space for
: parallel scalability for an inference
engine in large vocabulary continuous speech
recognition (LVCSR). Our implementation of the
inference engine involves a parallel graph tra-
versal through an irregular graph-based knowl-
edge network with millions of states and arcs.
The challenge is not only to define a software
architecture that exposes sufficient fine-grained
application concurrency but also to efficiently syn-
chronize between an increasing number of concurrent
tasks and to effectively utilize parallelism opportunities
in today’s highly parallel processors.

We propose four application-level implementation alterna-
tives called algorithm styles and construct highly optimized
implementations on two parallel platforms: an Intel Core i7
multicore processor and a NVIDIA GTX280 manycore processor.
The highest performing algorithm style varies with the imple-
mentation platform. On a 44-min speech data set, we demon-
strate substantial speedups of 3.4 X on Core i7 and 10.5X on
GTX280 compared to a highly optimized sequential implemen-
tation on Core i7 without sacrificing accuracy. The parallel
implementations contain less than 2.5% sequential overhead,
promising scalability and significant potential for further speed-
up on future platforms.

‘E.\/
S
5

Digital Object Identifier 10.1109/MSP.2009.934124

INTRODUCTION

We have entered a new era where sequential programs can no
longer fully exploit a doubling in scale of integration accord-
ing to Moore's law [1]. Parallel scalability, the ability for an
application to efficiently utilize an increasing number of pro-
cessing elements, is now required for software to obtain sus-
tained performance improvements on successive generations
of processors.

Many modern signal processing applications are evolving to
incorporate recognition backends that have significant scalabil-
ity challenges. In this article, we examine the scalability chal-
lenges in implementing a hidden Markov model (HMM)-based

Sﬁanalprocessinq Previous Page | Contents | Zoomin | Zoom out | Front Cover | Search Issue | Next Page

IEEE SIGNAL PROCESSING MAGAZINE 124 NOVEMBER 2009

1053-5888/09/$26.0002009IEEE

ic)

vgePchessing Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next nge

inference algorithm in an
LVCSR application.

An LVCSR application ana-
lyzes a human utterance from a
sequence of input audio wave-
forms to interpret and distin-
guish the words and sentences intended by the speaker. Its top
level architecture is shown in Figure 1. The recognition process
uses a recognition network, which is a language database that is
compiled offline from a variety of knowledge sources trained
using powerful statistical learning techniques. The speech feature
extractor collects feature vectors from input audio waveforms
using standard scalable signal processing techniques (2], [3] and
is not discussed in this article. The inference engine traverses a
graph-based recognition network based on the Viterbi search
algorithm [4] and infers the most likely word sequence based on
the extracted speech features and the recognition network. In a
typical recognition process, there are significant parallelism
opportunities in concurrently evaluating thousands of alternative
interpretations of a speech utterance to find the most likely inter-
pretation. We explore these opportunities in detail in this article.

Parallel graph traversal on large unstructured graphs is a
well-known challenge for scalable parallel computation (5],
especially in the context of an LVCSR inference engine [6]. The
traversal is conducted over an irregular graph-based knowledge
network and is controlled by a sequence of audio features
known only at run time. Furthermore, the data working set
changes dynamically during the traversal process, and the algo-
rithm requires frequent communication between concurrent
tasks. These problem characteristics lead to unpredictable
memory accesses and poor data locality and cause significant
challenges in load balancing and efficient synchronization
between processor cores.

In this article, we demonstrate the implications of these chal-
lenges on two highly parallel architectures: an Intel Core i7 mul-
ticore processor and an NVIDIA GTX280 manycore processor. We
consider multicore processors as processors that devote signifi-
cant transistor resources to complex features for accelerating sin-
gle thread performance, whereas manycore processors use their
transistor resources to maximize total instruction throughput at
the expense of single thread performance. We show that the best
algorithm on one architecture may per-
form poorly on another due to varying effi-
ciencies of key parallel operations, and that
the efficiency of the key parallel operations
is more indicative of the performance of
the application implementation.

We discuss two important issues in
multicore and manycore programming:
exploiting single-instruction, multiple-
data (SIMD) parallelism and implement-
ing efficient synchronization between
cores. SIMD execution involves simulta-
neously computing multiple data ele-
ments in parallel lanes of functional

Feature
Extractor

Speech

units. SIMD efficiency is a mea-

sure of how well an algorithm

can make use of functional

units with a certain number of

lanes (i.e., a given SIMD width).

For algorithms with a lot of
data parallelism (including those examined here) high SIMD
efficiency at a given SIMD width indicates that the algorithm is
likely to benefit greatly from an even wider SIMD. At the core
level, synchronization between cores incurs long latencies and
limits throughput. Efficient synchronization between cores
reduces the management overhead of a parallel algorithm and
allows the same problem to gain additional speedups as we
scale to more cores. We set up four algorithm styles to compare
two graph traversal techniques for efficient SIMD utilization
and two coordination techniques for core-level synchroniza-
tion. We show that differences in features of a platform’s micro-
architecture can lead to very different optimal configurations
of the inference algorithm.

RELATED WORK

There have been many attempts to parallelize speech recogni-
tion on emergding platforms, leveraging both fine-grained and
coarse-grained concurrency in the application.

Ravishankar in [7] mapped fine-grained concurrency onto the
PLUS multiprocessor with distributed memory. The implementa-
tion statically mapped a carefully partitioned recognition network
onto the multiprocessors to minimize load imbalance. While achiev-
ing 3.8 X speedup over the sequential implementation on five pro-
cessors, the static partitioning would not scale well to 30 + cores
because of load imbalance at run time. Agaram et al. showed an
implementation of LVCSR on a multiprocessor simulator [8].
However, the simulator did not model the synchronization overhead
between cores, which is crucial for scalability analysis.

Ishikawa et al. [9] explored coarse-grained concurrency in
LVCSR and implemented a pipeline of tasks on a cellphone-
oriented multicore architecture. They achieved 2.6 X speedup
over a sequential baseline version by distributing tasks among
three ARM cores. However, it is difficult for this implementa-
tion to scale beyond three cores due to the a small amount of
function-level concurrency in the algorithm.

Recognition Network

Acoustic Pronunciation Language
Model Model Model

Speech

Features
o2 Inference

Engine

[FIG1] Architecture of an LVCSR application.

w |EEE

[f{e]]

IEEE SIGNAL PROCESSING MAGAZINE 125 NOVEMBER 2009

[
]

2100 0= 12 ¢ I Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

You et al. [10] have recently proposed a parallel LVCSR
implementation on a commodity multicore system using
OpenMP. The Viterbi search was parallelized by statically par-
titioning a tree-lexical search network across cores. However,
only 2X speedup was achieved on shared-memory Intel Core2
quadcore processors due to limited memory bandwidth. A
tree-lexical search-based inference engine is tightly coupled
with recognition network features: many improvements in
the network compilation techniques require corresponding
changes in the inference engine. We address this with a dif-
ferent weighted finite state transducer (WFST)-based recogni-
tion network in this article (see the section “Characteristics
of LVCSR”).

The parallel LVCSR system proposed by Phillips et al. also
uses WIST and data parallelism when traversing the recogni-
tion network [11]. They achieved 4.6-6.2X speedup on 16 pro-
cessors, however, this implementation was limited by sequential
components in the recognizer and load imbalance among pro-
cessors. Their private buffer-based synchronization imposes sig-
nificant data structure overhead and is not scalable with the
increasing number of cores.

Prior works such as [12] and [13] by Dixon et al. and Cardinal
et al. leveraged manycore processors and focused on speeding up
the compute-intensive phase (i.e., observation probability com-
putation) of LVCSR on manycore accelerators. Both [12] and
[13] demonstrated approximately 5X speedups in the compute-
intensive phase and mapped the communication intensive phas-
es (i.e., Viterbi search) onto the host processor. This software
architecture incurs significant penalty for copying intermediate
results between the host and the accelerator subsystem and does
not expose the maximum potential of the performance capabili-
ties of the platform.

Chong et al. in [14] implemented a data parallel LVCSR
on the NVIDIA 8800 GTX for a linear lexicon-based recog-
nition network. Leveraging the regular structure of the
network, they achieved a 9X speedup compared to a SIMD

One lteration Per Time Step

/ Phase 1

o 4

[FIGZ] Software architecture of the LVCSR inference engine.
Multiple steps in a phase, each has 1,000-10,000 s concurrent tasks.

optimized sequential implementation on Core2 CPU. This
linear lexical-based implementation is highly optimized for
a simple language model and cannot easily incorporate
advanced language model features without incurring sig-
nificant performance penalties. The WEST approach in this
article addresses this issue.

In this work, we optimize the software architecture for
highly parallel multicore and manycore platforms, explore
multiple scalable synchronization methods, and traverse the
more challenging WEST-based recognition network. For the
manycore implementation, we implement both computation
intensive and communication intensive phases on the many-
core platform thereby eliminating expensive data-copying
penalty of intermediate results between the host and the
manycore accelerator.

CHARACTERISTICS OF LVCSR

Speech recognition is the process of interpreting words from
speech waveforms. The simplest problem is an isolated word
recognition task, such as discriminating between a “yes” or a
“no” in an interactive voice response system. Such tasks have
small vocabularies that can be searched exhaustively and can
generally be solved with modest computation effort.

In contrast, LVCSR is a more difficult problem. For exam-
ple, the objective might be to provide a transcription for a
video sequence. The LVCSR system must be able to recognize
words from a very large vocabulary arranged in exponentially
many permutations and with unknown boundary segmenta-
tion between words. Mathematically, it finds the most probable
word sequence W for a sequence of observed audio features O
given the set of possible word sequences W as follows:

W= argl"vmax{P(0|W)P(W)}. (1)

The product of acoustic and prior likelihood for the word
sequence W, i.e., P(O|W)P(W) is computed using a dynamic
programming recurrence in the Viterbi search algorithm [4].

The likelihood of the traversal process being in state j with
word sequence wy; at time ¢ can be derived from the likelihood
in preceding states as follows:

l//f(Sj} w/j) = m;'lX{'///--- (85 wy ---l)i) U b(0smp)}, (2)

where a;; is a transition probability from state 7 (s,) to state j (s;),
and 6(0,; m,) is the observation probability of context-
dependent state / (72;) on transition from s; to s;. The algorithm
iterates over a sequence of time steps. The likelihood of a word
sequence in each time step depends on the likelihood computed
in the previous time step. We refer to this as the iterations of the
inference engine (Figure 2). In each iteration we maintain thou-
sands of active states, that represent the most likely alternative
interpretations of the input speech waveforms and select the
most likely interpretation at the end of a speech utterance.

The WFST approach has been recently adopted as the
primary recognition network representation used in speech

IEEE SIGNAL PROCESSING MAGAZINE 126 NOVEMBER 2009

'Eff 12lProcessing Gt cal Contents | Zoom in | Zoom out | Front Cover

| Search Issue | Next Pégé

"eéProcessing Previous Page | antents | Zoom

recognition algorithms [15]. A
WFST is a Mealy finite state
machine (FSM) represented
by a list of arcs with five prop-
erties: source state, destination
state, input symbol, output
symbol, and weight. The rec-
ognition network usually consists of four hierarchical knowl-
edge sources: HMM acoustic model A, context model C,
pronunciation lexicon of words L, and language model G that
can be composed into one HeCoL°G WFST, also known as the
H-level network. The combined WEFST can be optimized
using standard FSM minimization techniques described in
[15] and used as a flattened FSM representation for the rec-
ognition network.

WFST has several advantages. First, it greatly simplifies the
recognition procedure by flattening the hierarchical knowl-
edge sources offline into a single level FSM to be traversed at
run time. Second, WIFST-based search is known to be more
efficient than other search methods in terms of necessary com-
putation. Detailed comparison in [16] shows that the WFST-
based search is faster than the tree-lexical search, since it
explores fewer search states for a given word error rate (WER).
Finally, the WFST-based inference engine is application agnos-
tic: it can be employed in other domains such as text and
image processing [15].

Figure 3 shows the graph traversal process on a section of
a WFST-based recognition network. There are two types of
arcs: nonepsilon arcs and epsilon arcs. The nonepsilon arcs
consume one input symbol to perform a state transition
while epsilon arcs are traversed without consuming any input
symbols. Since we utilized a H-level WFST recognition net-
work, the input labels of the graph represent the context-de-
pendent HMM states. Figure 2 illustrates the architecture of
the recognition algorithm. For each input frame, the recog-
nizer iteratively traverses the recognition network in the fol-
lowing three phases:

Phase 1: Observation probability computation. The obser-
vation probability measures the likelihood of an input feature
matching an acoustic input symbol
(the Gaussian mixture model of a con-
text-dependent state) by computing a [
distance function. Only the input sym-
bols on the active arcs (i.e., the outgo-
ing arcs of active states) need to be
computed. This phase references the
acoustic models shown in Figure 1.

Phase 2: Nonepsilon arc transi-
tions. The nonepsilon arc transitions
shown in Figure 3(a) compute a joint
probability of three components
shown in (2). These components are
1) the observation probability of the
current input 5(0,; m;) computed in
Phase 1, 2) the transition probability

or the weight of the arc being
traversed a; referenced from
the WFST recognition net-
work, and 3) the likelihood of
prior sequences, or the source
state cost i, 1(s;;wq-1y) com-
puted in the previous iteration
at time £ — 1. The result is the product of the three compo-
nents. Due to the Viterbi approximation, the cost of a desti-
nation state is updated with the cost of the most likely
incoming nonepsilon arcs for that state.

Phase 3: Epsilon arc transitions. The epsilon arcs do not
have input symbols, so the probabilities are computed as the
product of two components: 1) the transition probability, and
2) the likelihood of prior sequences. The network might con-
tain a chain of consecutive epsilon arcs, as shown in
Figure 3(b). By definition of epsilon arcs we must traverse all
outgoing epsilon arcs from each destination state until we
reach a state with no outgoing epsilon arcs. This phase refer-
ences the WFST recognition network.

Among the three phases, Phase 1 is the compute-intensive
phase, where more than 90% of the computation is spent in
evaluating the Gaussian mixture model in the observation
probability computation. Phases 2 and 3 are the communica-
tion-intensive phases. In these phases, the computation
involves aggregating multiple components from different
sources with different parallelization granularities and with
intermediate results extensively communicated between par-
allel processing units.

As shown in Figure 2, despite the fact that the recognition
procedure for each frame is sequential in nature, each phase of
the recognition has significant opportunities for fine-grained par-
allelism. Thousands of acoustic input symbols are utilized to
compute the observation probability in Phase 1, and tens of thou-
sands of arc transitions are traversed through the WFST network
in Phases 2 and 3. This presents an opportunity for fine-grained
concurrency in the LVCSR inference engine. We need to scalably
exploit the parallelism of each step to gain performance on multi-
core and manycore platforms.

&— 0 —® @ ~8) (192

¥ P @@ 5
@@ /| -0

/ (3 e = \7“.
S . : / /
[e

— Nonepsilon Arc 3 i
--- > Epsilon Arc il
(a) (b)

[FIG3] Graph traversal in a WFST-based recognition network.

-,,:1{31;-;:;;;;gProcessinq Previous Page | Contents | Zoom

IEEE SIGNAL PROCESSING MAGAZINE 127! NOVEMBER 2009

i

in | Zoom out | Front Cover | Search Issue | Next Page

a-;-,::,qProcessing Previous Page | Contents | Zoomin | Zoom out | Front Cover | Search Issue | Next Page

ALGORITHM STYLES OF

THE INFERENCE ENGINE

Given the challenging and unpre-

dictable nature of the underlying

graph-traversal algorithm in LVCSR,

implementing it on parallel plat-

forms presents two architectural

challenges: efficient core level synchronization and efficient
SIMD utilization. These challenges are key factors in making
the algorithms scalable to increasing number of cores and SIMD
lanes in multicore and manycore platforms. To find a solution
to these challenges, we explore two aspects of the algorithmic
level design space: the graph traversal technique and the recog-

Algorithm Styles in the Design Space

i Arc Based Arc-Based | Arc-Based
Transntlpn One Arc Aggregation | Propagation
Evaluation ataTime Approach Approach
Granularity
Addressing | State Based
SIMD I State-Based | State-Based
Utilization | A Outgoing/ | agqregation | Propagation
Incoming Arcs | - Approach | Approach
at a State
Aggregation | Propagation
Traversal
Organized at OTravgrszI
Destination | Organized at
State Source State
Graph Traversal Techniques
Addressing
Core-Level Synchronization

[FIG4] The algorithmic level design space for graph traversal
scalability analysis for the inference engine.

N

\ (c) Propagation with Atomic
Memory Ops Causing Contention -
Leading to Access Serialization *

.

Total Time for Synchronization

Y

Number of States/Arcs Handled

[FIGS] Scalability of the traversal process in terms of total
synchronization time.

nition network transition
evaluation granularity. Our
design space is shown in
Figure 4.

GRAPH TRAVERSAL

TECHNIQUES
One can ordanize the graph traversal in two ways: by propaga-
tion or aggregation. During the graph traversal process, each
arc has a source state and a destination state. Traversal by
propagation organizes the traversal process at the source state.
It evaluates the outgoing arcs of the active states and propa-
gates the result to the destination states. As multiple arcs may
be writing their result to the same destination state, this tech-
nique requires write conflict resolution support in the under-
lying platform. Traversal by aggregation organizes the
traversal process around the destination state. The destination
states update their own information by performing a reduction
on the evaluation results of their incoming arcs. This process
explicitly manages the potential write conflicts by using addi-
tional algorithmic steps such that no write conflict resolution
support is required in the underlying platform.

The choice of the traversal technique has direct implications
on the cost of core level synchronization. Efficient synchroniza-
tion between cores reduces the management overhead of a par-
allel algorithm and allows the same problem to gain additional
speedups as we scale to more cores. Furthermore, there are
additional implications on design productivity and code port-
ability for parallel implementations.

SYNCHRONIZATION EFFICIENCY

Minimizing the total cost of synchronization is key to making
the traversal process scalable. Figure 5 outlines the tradeoffs in
the total cost of synchronization between the aggregation tech-
nique and the propagation technique. The qualitative graph
shows increasing synchronization cost with increasing number
of concurrent states or arcs evaluated.

The fixed cost for the aggregation technique (Y-intercept of
line (b) in Figure 5) is higher than that of the propagation tech-
nique, as it requires a larger data structure and a more complex
set of software routines to manage potential write conflicts. The
relative gradient of the aggregation and propagation techniques
depends on the efficiency of the platform in resolving potential
write conflicts. If efficient hardware-supported atomic opera-
tions are used, the variable cost for each additional access would
be small, and the propagation technique should scale as line (a)
in Figure 5. If there is no hardware support for atomic opera-
tions and sophisticated semaphores and more expensive soft-
ware-based locking routines are used, the propagation technique
would scale as line (d). In addition, if the graph structure cre-
ates a scenario where many arcs are contending to write to a
small set of states, serialization bottleneck may appear and the
propagation technique could scale as line (c).

To minimize the synchronization cost for a given problem
size, we need to choose the approach corresponding to the

IEEE SIGNAL PROCESSING MAGAZINE 128 NOVEMBER 2009

21| 200 6=y 1 3 ¢ B\ Previous Page | Contents | Zoomin | Zoom out | Front Cover | Search Issue | Next Page

lowest-lying line in Figure 5.

For a small number of active

states or arcs we should choose

the propagation technique. For

a larger number of arcs, howev-

er, the choice is highly depen-

dent on the application graph structure and the write conflict
resolution support in the underlying implementation platform.

PORTABILITY AND PRODUCTIVITY IMPLICATIONS

The aggregation technique requires only standard global barri-
ers for synchronization, whereas the propagation technique
requires underlying write-conflict-resolution support, which
can vary significantly across different platforms. Graph traversal
implementation using the aggregation technique is more porta-
ble, while the one using the propagation technique may face
portability issues if its architecture depends on one particular
implementation of the write-conflict-resolution support.

The propagation approach is a more intuitive and productive
technique for expressing the traversal process. It also often
requires fewer lines of code, as it leverages the write conflict
resolution support in the implementation platform. However, if
code portability is a major concern when implementing the
inference engine, the productivity tradeoffs of developing for
multiple platforms are less clear.

TRANSITION EVALUATION GRANULARITY

One can also define two granularities for recognition network
transition evaluation: evaluation based on states and evaluation
based on arcs. In a parallel implementation, we must define
units of work that can be done concurrently. State-based evalu-
ation defines a unit of work as the evaluation of all outgoing or
incoming arcs associated with a state. Arc-based evaluation
defines a unit of work as the evaluation of
a single arc.

The choice of evaluation granularity
has direct implications on the efficiency
of SIMD level processing, as each unit of
work can be mapped onto a SIMD lane in
a processor. High SIMD efficiency for a
given SIMD width indicates that the
algorithm is likely to benefit greatly from
an even wider SIMD unit in future pro-
cessors. We explore the implications of
evaluation granularity on program con-
trol flow and data layout in this section.

Active Mapped

CONTROL FLOW IMPLICATIONS

SIMD operations improve performance
by executing the same operation on a set
of data elements packed into a contigu-
ous vector. Thus, SIMD efficiency is
highly dependent on the ability of all
lanes to synchronously execute useful
instructions. When all lanes are fully

States onto SIMD

Time

utilized for an operation, we
call the operation “synchro-
nized.” When operations are
not synchronized, we consider
them “divergent.”

For the state-based approach,
we see in Figure 6 that the control flow diverges as some lanes
are idle, while others are conducting useful work. In our recog-
nition network, the number of outgoing arcs of the active states
ranges from one to 897. The bar chart in Figure 6 shows that
the state-based evaluation granularity incurs significant penal-
ties with increasing SIMD width. A 32-wide SIMD achieves only
10% utilization and achieves only a 3.3X speedup over a
sequential version.

We can eliminate this control flow divergence by using the
arc-based approach, as each arc evaluation presents a constant
amount of work. However, such fully synchronized control flow
requires extra instruction overhead, as well as extra storage
overhead. For each arc evaluation to be an independent task,
more tasks have to be defined and each arc must have a refer-
ence to its source state. We must manage more tasks and store
more information for every arc we evaluate.

DATA LAYOUT IMPLICATIONS
Data accesses can be classified as “coalesced” or “uncoalesced.” A
“coalesced” memory access loads a consecutive vector of data
that directly maps onto the SIMD lanes in the processing unit.
Such accesses efficiently utilize the available memory bandwidth.
“Uncoalesced” accesses, on the other hand, load nonconsecutive
data elements to be processed by the vector units thereby wast-
ing bandwidth.

During the traversal process, we access an arbitrary subset of
nonconsecutive states or arcs in the recognition network in each

SIMD
Utilization
Extra Work

| o

Speedup and SIMD Efficiency in
State-Based Traversal

100%

| [Speedup over L
1 Sequential Case| 90%
| ~=SIMD Utilization | 80%

70%
60%
&L : 50%
40%
30%
| 20%
L 10%
11 09

Speedup

N Ol O O e TO0L LD O
SIMD Utilization

[PR

1320 iy 8 HI6E 32
SIMD Width

[FIG6] SIMD unit utilization in the active state-based traversal.

oo |EEE

IEEE SIGNAL PROCESSING MAGAZINE (129 NOVEMBER 2009

S 2 (070~ 13 s B Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

';Processing Previous Page | Co_ntents | Zoom in | Zoom qut_| 'Front Coyer | Search Issue | Next Page

iteration resulting in unco-

alesced memory accesses. One

solution to this is to explicitly

gather all required information

into a temporary buffer such

that all later accesses to the tem-

porary buffer will be coalesced.

This would help data coalescing at the expense of increasing the
number of memory locations accessed in each iteration. This
tradeoff is more sensitive in a cache-based architecture, since the
enlarged working set size leads to capacity misses in the cache.

IMPLEMENTATION OF THE INFERENCE ENGINE

We examine full implementations of the inference engine on two
separate platforms: 1) an Intel Core i7 multicore processor and
2) a NVIDIA GTX280 manycore processor. We discuss the control
flow and data structure implementations as well as core-level
load balancing issues and recognition network optimization.

CONTROL FLOW DESIGN

The flow diagrams in Figure 7(a) and (b) describe the control
flow of our implementations in each iteration of the inference
engine. We present the multicore implementation in Figure 7(a)
and the manycore implementation in Figure 7(b). Both imple-
mentations are illustrated with two flow diagrams, one for graph
traversal by propagation and one for traversal by aggregation. All

of the flow diagrams have the

three distinct execution phases

as defined in the section

“Characteristics of LVCSR.”

Each phase in the algorithm can

involve multiple steps, illustrat-

ed as boxes in the flow diagram.

Each step in the flow chart represents an algorithmic step

that depends on the results from the previous step, where the

dependency is respected by applying a global barrier at the end of

every step. For example, Phase 1 involves three steps: collecting

the unique labels to extract the context-dependent state models

to be computed, computing the Gaussian scores with the input

features and Gaussian parameters referenced by the models, and

finally calculating the observation probability of the models uti-

lizing their mixture weights and corresponding Gaussian scores.

In Phases 2 and 3, the result of each step is written to memory

and the next step reads it from memory, usually in a different

order. With respect to each core on a multicore/manycore chip,

intermediate results are communicated between the cores across
the different algorithmic steps through memory.

The distinction between evaluation by state and evaluation
by arc is also illustrated in Figure 7. In the Core i7 implementa-
tions in Figure 7(a), the task queues created at the beginning of
Phase 2 and 3 can involve tasks based on states or arcs, and the
following steps are performed according to the granularity of

Propagation Aggregation Propagation Aggregation
| Assign Tasks to Task Queue | | Assign Tasks to Task Queue | | Populate Active States/Arcs I I Populate Active States/Arcs |
T T Observation T T
| Collect Unique Labels | | Collect Unigue Labels | Probablhty Collect Unique Labels | | Collect Unique Labels |
¥ J r z | Computation | ¥ | | I |
Compute Gaussian Score Compute Gaussian Score Compute Gaussian Score Compute Gaussian Score
' > Phase = 2
I Calculating Observation Prob. J I Calculating Observation Prob. | (Phase 1) l Calculating Observation Prob. | I Calculating Observation Prob. J
————— -—t—-————-—-———————t———-—-——-————-————-————-——————-———————————————
I Assign Tasks to Task Queue J | Assign Tasks to Task Queue |
1
For Each Active State/Arc:
* Compute N:lzvneeps::n A’fc Transition Nonepsilon For Each Active State/Arc : | Collect Destination States |
For Each Active State/Arc: Probability psi + Compute Nonepsilon Arc Transition = +
» Compute Nonepsilon Arc Transition « Set Flags for Destination States Arc Probability For Each Active State/Arc:
Probability T « Update Min Probability by Atomic + Compute Nonepsilon Arc Transition
: i i i - = j Traversal : Probability
Upda?e Min Probability by Atomic Collect Unique Destination States Operations v
Operations T Phase inati ;
* Activate Destination State For Each Destnation Staie Fg(ialc.:n Dleal_na;n’%c; Stlﬁ_t;.b Gl b
" v * Fins ocal in apili! Yy Heduction
Ci;‘p?fe‘-’: for Input Labels to Be « Find Local Min Probability by (Phase 2)] -
Reduction | Copy Results Back to CPU | | Copy Results Back to CPU |
;:Sel Fla%s for Input Labels to Be | 3 I I 2 |
ompute Collect Next Active States Collect Next Active States
————— Sheee e e e e e e e e e e e e e
Assign Tasks to Task Queue | r Assign Tasks to Task Queue | | Populate Active States/Arcs | | Populate Active States/Arcs |
1L] 3 1
For Each Active State/Arc: o £ inati
For Each Active State/Arc: « Compute Epsilon Arc Transition For Each Achvg State/Arc: - | Collsct Destination States’ l
% o i i * Compute Epsilon Arc Transition T
« Compute Epsilon Arc Transition Probability Epsilon Arc Probabili For Each Active State/Arc:
Probability » Set Flags for Destination States . " b M ’ X i e
Update Min Probability by Atomic ¥ Traversal spdataibinErobebilily by Atomic Sompuetrslon A Tishstion
. i Probabilit;
Operations Collect Unique Destination States and Add Phase Opsiations T T
» Activate Destination State Newly Activated States/Arcs into Active Set Ph For Each Destination State:
« Set Flags for Input Labels to Be ¥ (Phase 3) T « Find Local Min Probability by Reduction
Computed For Each Destination State: ¥
« Recursive Call for Following Epsilon ;{F“;‘d I;ocal Min Probability By I Copy Results Back to CPU] | Copy Results Back to CPU |
Arcs of the Destination State sl
* Set Flags for Input Labels to Be I Collect Next:ﬂ‘cu've States I | Collect Next A;tivs States |
Computed

(@)

(b)

[FIG7] Flow diagram of the algorithm styles explored on both the Core i7 and the GTX280 platforms. (a) Core i7 implementation.

(b) GTX280 implementation.

IEEE SIGNAL PROCESSING MAGAZINE 130° NOVEMBER 2009

'fProcessinq Previous Page | Contents | Zoomin | Zo t | Front Cover | Search Issue | Next Page

tasks in the task queue. In the

GTX280 implementation in

Figure 7(b), the run-time data

structures are populated with

either active states or active arcs

at the beginning of Phases 1

and 3, and the following steps

in Phases 2 and 3 are performed according to the data format in
the run-time data structures. The data structure population of
Phase 2 is done before Phase 1 as an optimization to allow the
unique set of labels to be extracted at the same time to avoid
duplications in the expensive Gaussian score computation.

DATA STRUCTURE IMPLEMENTATIONS

FFor the Core i7 implementation, all data structures are stored in
main memory and the data working set is transparently man-
aged by the hardware cache hierarchy. To utilize the cache more
efficiently, all the outgoing arcs information from a source state
is stored consecutively in main memory. Since, in the state-
based traversal, the outgoing arcs from the same source state
are processed successively in the same thread of execution, this
layout reduces the memory access time of Phases 2 and 3.

For the GTX280 implementation, there are two levels of mem-
ory hierarchy for the graphics processing unit (GPU) with orders-
of-magnitude differences in throughput. Data in the main memory
on the host system can be accessed at 2.5 GB/s from the GPU. Data
in device memory on the GPU board can be accessed at 120 GB/s
from the GPU. Phases 2 and 3 implement graph traversal func-
tions that are memory access intensive. It is essential to keep
the working set in device memory for high bandwidth access.
The GTX280 provides 1 GB of device memory on the GPU board
that can fit the acoustic model (130 MB), the language model
(400 MB), and various temporary graph traversal data struc-
tures. We architect all graph traversal steps to run exclusively
on the GPU with intermediate results stored in the device mem-
ory. This avoids the host-device memory transfer bottleneck and
allows the Compute Unified Device Architecture (CUDA) kernels
to utilize 20-120 GB/s memory bandwidth. However, some steps
such as prefix scan incur significant penalty when parallelized,
requiring more total operations to reach the same results. This
is reflected in the lower overall speedup for Phases 2 and 3. Not
all intermediate data can fit in the device memory, however. The
traversal history data is copied back to the host system at regu-
lar intervals to save space. Since history data is only used at the
very end of the traversal process, the data transfer is a one-way,
device-to-host copy. This transfer involves around 10 MB of
data/s, which translates to less than 5 ms of transfer time on a
channel with 2.5 GB/s bandwidth, and is accounted for in the
sequential overhead measurements.

CORE-LEVEL LOAD BALANCING

Core-level load imbalance is a key factor that limits parallel
speedup in the inference engine for LVCSR [11]. Load imbalance
occurs when the states in the recognition network are statically
assigned to each core and the working set migrates every iteration

depending on input audio fea-
tures. Load imbalance can be
eliminated by dynamically
assigning work to idle cores in
each iteration.
For the Core i7 implementa-
tion, we use a distributed task
queue programming framework [17]. The distributed task queue
defines a task as a function that executes in one thread and can
be scheduled as a unit. The programmer describes an array of
tasks for arc or state computation and the framework monitors
for idle cores and load balances the system during run time.
Load balancing is done as follows: the distributed task queue
manages one physical queue per thread, assigning each thread a
“preferred” queue that it accesses with highest priority. Before
each phase in the inference engine implementation, the tasks
are explicitly and evenly distributed among the set of task
queues. Each thread processes tasks in its respective local
queue. When a thread becomes idle, the task queue steals a task
for the idle thread from a nonempty queue in another thread,
thereby load balancing the system. This lazy load-balance policy
adds minimal overhead during execution and frees the program-
mer from concerns of core-level load balancing.

For the GTX280 implementation, we use the CUDA pro-
gramming framework (18], which provides the key abstractions
for data parallel programming. We assert control over a hierar-
chy of thread groups by programming with conventional C code
for one thread. The CUDA framework then constructs the neces-
sary SIMD instructions in a thread group at compile time, and
distributes and load balances thread groups in hardware at run
time onto the many cores of the GTX280.

RECOGNITION NETWORK OPTIMIZATION

In the epsilon arc traversal, some states in the recognition net-
work can reach destination states through multiple levels of
expansion through the epsilon arcs. For example, State 5 in
Figure 3 reaches States 8, 9, and 11 through its epsilon arc tran-
sitions. Our recognition network has chains of epsilon arcs that
are up to four levels deep.

In the propagation approach of the Core i7 implementation,
the traversal over epsilon arcs is done recursively over the epsi-
lon network. Multiple levels of states connected by the epsilon
arcs are updated in each recursive step. However, this kind of
recursive traversal does not work well for the aggregation
approach of the Core i7 implementation or the data parallel
GTX280 implementations. This is because a parallel expansion
over one level of epsilon arcs requires a global barrier of syn-
chronization limiting the amount of parallelism.

We insert look-ahead epsilon arcs into the network so that
every state connected by multiple expansions of epsilon arcs is
reachable in only one level. For example in Figure 3, we insert
an epsilon arc between State 5 and State 11, such that State 11
is reachable within one level of epsilon arc expansion from
State 5. For our recognition network, this type of insertions
increased the total number of arcs in the recognition network

om IEEE
e I

ud 1 &4

IEEE SIGNAL PROCESSING MAGAZINE 131 NOVEMBER 2009

IProcessina

VPrevious Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

jj@ﬁaﬂprocessing Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page qMass

AVERAGE NUMBER OF

ACTIVE STATES 32,820 20,000 10,139 3,518
WER 41.6 41.8 422 445
SEQUENTIAL 4.36 317 2:29 1.20

RTF MULTICORE 1.23 0.93 0.70 0.39
MANYCORE 0.40 0.30 0.23 0.18

by only 2.0%. The number of arcs traversed during decoding is
increased by 1.7%, while total latency spent in graph traversal is
reduced by 19%. This increase in network size is negligible
compared to the significant savings from eliminating potential
multilevel epsilon arc expansion overhead.

EVALUATION OF THE INFERENCE ENGINE

SPEECH MODELS AND TEST SETS

The speech models are taken from the SRI CALO real-time
meeting recognition system [19]. The front end uses 13
dimensional perceptual linear prediction (PLP) features with
first, second, and third order differences, is vocal tract-length
normalized, and is projected to 39 dimensions using het-
eroscedastic linear discriminant analysis (HLDA). The acoustic
model is trained on conversational telephone and meeting
speech corpora using the discriminative minimum phone
error (MPE) criterion. The language model is trained on meet-
ing transcripts, conversational telephone speech, and Web and
broadcast data [20]. The acoustic model includes 52,000 tri-
phone states that are clustered into 2,613 mixtures of 128
Gaussian components.

The pronunciation model contains 59,000 words with a total
of 80,000 pronunciations. We use a small backoff bigram lan-
guage model with 167,000 bigram transitions. The recognition
network is an HoCoLeG model compiled using WFST tech-
niques and contains 4.1 million states and 9.8 million arcs.

The test set consisted of excerpts from NIST confer-
ence meetings taken from the “individual head-mounted
microphone” condition of the 2007 NIST Rich Transcription
evaluation. The segmented audio files total 44 mins in length
and comprise ten speakers. For the experiment, we assumed
that the feature extraction is performed offline so that the infer-
ence engine can directly access the feature files. The meeting

TYPE MULTICORE MANYCORE

PROCESSOR CORE 17 920 GTX280
(+CORE2 Q9550)

CORES FOUR CORES (SMT) 30 CORES

SIMD WIDTH FOUR LANES EIGHT PHYSICAL, 32
LOGICAL

CLOCK SPEED 2.66 GHZ 1.296 GHZ

SP GFLOP/S 85.1 933

MEMORY CAPACITY 6 GB 1 GB (8 GB)

MEMORY BW 32.0 GB/s 141.7 GB/s

COMPILER ICC 10.1.015 NVCC 2.2

recognition task is very challenging due to the spontaneous
nature of the speech. The ambiguities in the sentences require
larger number of active states to keep track of alternative inter-
pretations which leads to slower recognition speed.

Our recognizer uses an adaptive heuristic to adjust the
search beam size based on the number of active states. It con-
trols the number of active states to be below a threshold to
guarantee that all traversal data fits within a pre-allocated mem-
ory space. Table 1 shows the decoding accuracy, in terms of
WER with varying thresholds and the corresponding decoding
speed on various platforms. The recognition speed is represent-
ed by the real-time factor (RTF) that is computed as the total
decoding time divided by the duration of the input speech.

As shown in Table 1, the multicore and manycore implemen-
tations can achieve significant speedup for the same number of
active states. More importantly, for the same RTF, parallel
implementations provide a higher recognition accuracy. For an
RTF of 1.2, WER reduces from 44.5 to 41.6% going from a
sequential to a multicore implementation. For an RTF of 0.4,
WER reduces from 44.5 to 41.6% going from a multicore imple-
mentation to a manycore implementation.

For the experiments in the next few sections, we choose a
beam-width setting that maintains an average of 20,000
active states to analyze the performance implications in
detail. All algorithm styles and the sequential implementa-
tion are functionally equivalent with negligible differences in
decoding output.

EXPERIMENTAL PLATFORM SETUP

The specifications of the experimental platforms are listed in
Table 2. The peak value of the single precision giga floating
point operations per second (SP GFLOPS/s) and the memory
bandwidth are the theoretical bounds. For the manycore plat-
form setup, we use a Core2 Quad-based host system with 8
GB host memory and a GTX280 graphics card with 1 GB of
device memory.

OVERALL PERFORMANCE

We analyze the performance of our inference engine imple-
mentations on both the Core i7 multicore processor and the
GTX280 manycore processor. The sequential baseline is imple-
mented on a single core in a Core i7 quadcore processor. It
utilizes a SIMD-optimized Phase 1 routine and non-SIMD
graph traversal routine for Phases 2 and 3. This configuration
is chosen to show the best performance of sequential baseline
as explained in the section, “SIMD Utilization Efficiency
Evaluation.” When comparing to this highly optimized sequen-
tial baseline implementation, we achieve 3.4 X speedup using
all cores of Core i7 and 10.5 X speedup on GTX280.

The performance gain is best illustrated in Figure 8 by
highlighting the distinction between the compute-intensive
phase (green bar) and the communciation intensive phase
(pink bar). The compute-intensive phase achieves 3.6 X
speedup on the multicore processor and 17.7X on the many-
core processor, while the communication-intensive phase

IEEE SIGNAL PROCESSING MAGAZINE 132 NOVEMBER 2009

E-:r‘gagprocessinq Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

: R =

il

’!Processing Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

achieves only 2.8 speedup on the mul-
ticore processor and 3.7X on the many-
core processor. 0.0

The speedup numbers indicate that :

Decoding Time Per Second of Speech (s)
1.0 2.0 3.0

synchronization overhead dominates the Sequential |

4.0
' 82.7% Compute Intensive
17.3% Communication Intensive

run time as more processors need to be
coordinated in the communication inten-
sive phase. In terms of the ratio between
the compute and communication-inten-
sive phases, the pie charts in Figure 8
show that 82.7% of the time in the
sequential implementation is spent in the
compute-intensive phase of the applica-
tion. As we scale to the manycore imple-
mentation, the compute-intensive phase becomes proportionally
less dominant, taking only 49% of the total run time.
The increasing dominance of the communication-intensive
phase motivates a detailed examination of the parallelization
implications in the communication-intensive phases of our
inference engine.

DETAILED PERFORMANCE ANALYSIS

We present a detailed analysis of the various algorithm styles
proposed in the section “Algorithm Styles of the Inference
Engine” that implement the graph traversal process in the com-
munication-intensive phase of our inference engine. The run
time performances of the different algorithm styles are summa-
rized in Table 3, where each column represents a different
implementation, and each row provides performance and speed-
up numbers for the implementations. We found that the sequen-
tial overhead in our implementation is less than 2.5% of the
total run time even for the fastest implementation. This demon-
strates that we have a scalable software architecture that prom-
ises greater potential speedups with more platform parallelism
expected in future generations of processors.

We also find that the fastest algorithm style differs for
each platform. Table 3 shows the fastest algorithm style for
each platform. For Core i7 the the fastest algorithm style is
propagation-by-states and for GTX280 the fastest style is
propagation-by-arcs. We evaluate these results with respect
to the synchronization cost and SIMD utilization efficiency in
this section.

COREi7

Multicore [3.4x

Manycore] 10.5x

79.1% Compute Intensive
20.9% Communication Intensive

49.0% Compute Intensive
51.0% Communication Intensive

[FIG2] Ratio of computation-intensive phase of the algorithm versus communication
intensive phase of the algorithm.

SYNCHRONIZATION COST EVALUATION

Synchronization cost for the destination state updates in the
graph traversal differs significantly between the aggregation
and propagation algorithm styles. As shown in Table 3, on
both the multicore and manycore platforms, aggregation-
based implementations achieved worse performance for the
communication-intensive phase compared to the sequential
implementation. This illustrates the scenario where the cost
of parallel coordination overwhelmed the benefit of parallel
execution. The high cost of parallel coordination can be
explained by Figure 7. Phases 2 and 3 of the aggregation tech-
niques have two extra steps in both the multicore and the
manycore implementations, adding to the overhead of manag-
ing graph traversal.

The propagation algorithm style, however, is able to outper-
form the sequential implementation for the communication-in-
tensive phase. As an example, we show the observed scaling
characteristics for the synchronization cost on the manycore
processor in Figure 9. This figure uses problem sizes shown in
Table 1. The X-axis shows the number of active arcs evaluated
and the Y-axis shows the execution time of synchronization.
Line (a) in Figure 9 corresponds to the propagation-by-arcs
style. It has a lower overall synchronization cost compared to
line (b), which is from the aggregation-by-arcs style. The low
synchronization cost in the propagation-by-arcs style is the
result of careful tuning of the algorithm to avoid writing to
shared memory locations in device memory by every task.
Writing to shared memory locations in device memory by every

CORE i7 GTX280
SEQUENTIAL PROP. BY PROP. BY AGGR. BY PROP. BY PROP. BY AGGR. BY AGGR. BY
SECONDS (%) PROP. BY STATES STATES ARCS STATES STATES ARCS STATES ARCS

PHASE 1 2.623 (83%) 0.732(79%) 0.737 (73%)

PHASE 2 0.474 (15%) 0.157 (17%) 0.242 (24%)

PHASE 3 0.073 (2%) 0.035 (4%) 0.026 (3%)
SEQUENTIAL

OVERHEAD — 0.001 0.001 0.001
TOTAL 3171 0.925 1.007 2.593
SPEEDUP 1 3.43 3.15 1.22

0.754 (29%)
1.356 (52%)
0.482 (19%)

0.148 (19%)
0.512 (66%)
0.108 (15%)

0.148 (49%)
0.103 (34%)
0.043 (14%)

0.147 (12%)
0.770 (64%)
0.272 (23%)

0.148 (16%)
0.469 (51%)
0.281 (31%)

0.008 (1.0%) 0.008 (2.5%) 0.014(1.2%) 0.014(1.6%)
0.776 0.301 1.203 0.912
4.08 10.53 2.64 348

o [EEE

IEEE SIGNAL PROCESSING MAGAZINE 133 NOVEMBER 2009

maEProcessina Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

(c) Propagation with Atomic
3 |Memory Ops Having
| Serious Memory
2.5 Contention Issues -

Total Synchronization Cost (s)

0 20 40 60 80 100
Number of Arcs Synchronized (Millions of Arcs)

[FIG2] Synchronization cost for GTX280 as it scales over
various number of arcs to traverse.

task creates memory contention and serialization bottlenecks
resulting in the significant increase in synchronization penalty
shown as line (c). This illustrates that although the propagation
technique can have significant lower synchronization cost than
the aggregation technique, synchronization bottlenecks due to
graph structure-induced memory access contentions can still
significantly degrade performance in a highly parallel design.

SIMD UTILIZATION EFFICIENCY EVALUATION

SIMD utilization efficiency is increasingly important in
multicore and manycore programming. Neglecting SIMD or
a poor utilization of SIMD can lead to an order of magni-
tude degradation in performance. The control for SIMD uti-
lization efficiency lies in the granularity of tasks assigned to
the SIMD lanes. In the case with the manycore propagate-
based implementation, the communication-intensive phase
achieved a 4X boost in performance in switching from a
state-based task granularity to an arc-based task granulari-
ty. One key step, “compute nonepsilon arc transition
probability,” was accelerated by more than 9X when mak-
ing this switch.

In the multicore implementation, the performance
tradeoff for task granularity is more complex. The overhead of
managing arc-based task granularity does not only include
creating finer grained tasks, but it also results in various
cache implications such as increased capacity misses caused
by maintaining a larger working set and using less regular
data access patterns. Although this overhead can be partially
compensated by more efficient SIMD execution, applying
SIMD for the arc traversal (Phases 2 and 3) does not yield any
speedup in the Core i7 implementations, since the overhead
of gathering the data exceeds the speedup achievable by a rel-
atively narrow four-wide SIMD. Thus, the arc traversal steps
still perform faster with the state-based task granularity. For
this reason, we did not evaluate the aggregation-by-arcs style
in Core i7 implementations.

CONCLUSIONS

In this article, we exposed the fine-grained application con-
currency in a HMM-based inference engine for LVCSR and
optimized a parallel software architecture for the inference
process with less than 2.5% sequential run time overhead,
promising significant potential for further speedup on future
parallel platforms.

We explored two important aspects of the algorithmic
level design space for parallel scalability to account for differ-
ent support and efficiency of concurrent task synchronization
and SIMD utilization on multicore and manycore platforms.
While we achieved significant speedups compared to highly
optimized sequential implementation: 3.4X on an Intel Core
i7 multicore processor and 10.5X on a GTX280 NVIDIA
manycore processor, the fastest algorithm style differed for
each platform. Application developers must take into account
underlying hardware architecture features such as synchroni-
zation operations and the SIMD width when they design algo-
rithms for parallel platforms.

Automatic speech recognition is a key technology for
enabling rich human-computer interaction in emerging appli-
cations. Parallelizing the implementation is crucial to reduce
recognition latency, increase recognition accuracy, enabling
the handling of more complex language models under time
constrains. We expect that an efficient speech recognition
engine will be a component in many exciting new applications
to come.

ACKNOWLEDGMENTS

The authors would like to thank Pradeep Dubey, Lynda
Grindstaff, and Yasser Rasheed at Intel for initiating and
supporting this research and Nelson Morgan, Andreas
Stolcke, and Adam Janin at ICSI for insightful discussions
and continued support in the infrastructure used in this
research. The authors also thank NVIDIA for donating the
hardware used.

This research is supported in part by the Ministry of
Education, Science and Technology, Republic of Korea under
the Brain Korea 21 Project, the Human Resource Development
Project for IT SoC Architect, and by the Korea Research
Foundation Grant funded by the Korean Government (MOEHRD
KRI-2007-357-D00228). It is also supported in part by Microsoft
(Award 024263), Intel (Award 024894) funding, matching fund-
ing by U.C. Discovery (Award DIG07-10227), and by an Intel
Ph.D. research fellowship.

AUTHORS

Kisun You (kisun.you@ieee.org) received his B.S. degree in
electrical engineering and computer science from Seoul
National University, Korea, in 2002, where he is currently a
Ph.D. candidate. His research interests include analysis and
optimization of speech recognition for manycore and multicore
platforms and its efficient hardware design. He conducted
research as an intern at Intel Application Research Labs in 2008.
He is a Student Member of the IEEE.

IEEE SIGNAL PROCESSING MAGAZINE

120 =312 s B\ Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

134 NOVEMBER 2009

'Processing Previous Page | Contents | Zoom in | Zoom out | Front Coyer

| Search Issue | Next Page

qMass

Jike Chong (jike@chongjike.net) received his B.S. and M.S.
degrees from 'EaTnE;giE Mellon University, Pittsburgh,
Pennsylvania in 2001. He is currently a Ph.D. candidate at
University of California, Berkeley, working on application frame-
works in speech recognition and computational finance to help
domain experts efficiently utilize highly parallel computation
platforms. Previously, he worked for Sun Microsystems, Inc.,
designing microarchitecture features for highly parallel proces-
sors. He also conducted research at Intel Application Research
Labs and Xilinx Research Labs. He is an Intel Ph.D. research fel-
low, and a Student Member of Eta Kappa Nu, Tau Beta Pi, and
the IEEE.

Youngmin Yi (ymyi76@gmail.com) received his B.S. and
Ph.D. degrees from Seoul National University, Korea in 2000
and 2007, respectively. He is currently a postdoctoral researcher
at the University of California, Berkeley. His research interests
include parallel software system design methodology, frame-
works for efficient and productive parallel software designs,
developing parallel applications for machine learning, and
studying performance implications of the applications in many-
core architectures. He is a Member of the IEEE.

Fkaterina Gonina (egonina@eecs.berkeley.edu) received a
B.S. degree in computer science from the University of Illinois,
Urbana-Champaign in 2008. She is currently pursuing a Ph.D.
degree in computer science at the University of California,
Berkeley. Her research interests include parallel application
development, analysis and optimization on manycore and mul-
ticore platforms, and implications of various computational
loads on the architecture of parallel platforms.

Christopher J. Hughes (christopher.j.hughes@intel.com)
received his Ph.D. degree from the University of Illinois at Urbana-
Champaign in 2003. He is currently a staff researcher at Intel Labs
in the Throughput Computing Lab. His research interests are
emerging workloads and computer architectures. His recent work
focuses on mapping computationally intensive applications to
next-generation multicore and manycore CPUs and GPUs. He is a
Member of the IEEE.

Yen-Kuang Chen (y.k.chen@ieee.org) received the B.S.
degree from National Taiwan University and the Ph.D. degree
from Princeton University in New Jersey. He is a principal
engineer at Intel Labs. His research interests include develop-
ing innovative multimedia applications, studying the perfor-
mance bottleneck in current architectures, and designing
next-generation microprocessors/platforms. He is a Senior
Member of the IEEE.

Wonyong Sung (wysung@snu.ac.kr) received the Ph.D. degree
in electrical and computer engineering from the University of
California, Santa Barbara, in 1987. He has been a faculty member
at Seoul National University since 1989. His major research inter-
ests are the development of fixed-point optimization tools, imple-
mentation of VLSI for digital signal processing, and development
of parallel processing software for signal processing. He has been a
design and implementation technical committee member of the
[EEE Signal Processing Society since 1999. He is a Senior Member
of the IEEE.

Kurt Keutzer (keutzer@eecs.berkeley.edu) received his B.S.
degree in mathematics from Maharishi International
University in 1978 and his M.S. and Ph.D. degrees in computer
science from Indiana University in 1981 and 1984, respectively.
He joined AT&T Bell Laboratories in 1984, and Synopsys, Inc.
in 1991, where he became chief technical officer and senior
vice-president of research. He became a professor of electrical
engineering and computer science at the University of
California, Berkeley in 1998, and served as the associate direc-
tor of the Gigascale Silicon Research Center. He cofounded the
Universal Parallel Computing Research Center at Berkeley in
2007. He is a Fellow of the IEEE.

REFERENCES

[1] K. Asanovic. R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The Jand-
scape of parallel computing research: A view from Berkeley,” EECS Dept., Univ. of
California, Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec. 2006.

[2] A. Obukhov and A. Kharlamov, “Discrete cosine transform for 8 x 8 blocks
with CUDA,” NVIDIA White Paper, Oct. 2008,

(3] V. Podlozhnyuk, “FFT-based 2D convolution,” NVIDIA White Paper, June 2007.

(4] H. Ney and S. Ortmanns, “Dynamic programming search for continuous
speech recognition,” IEEE Signal Processing Mag., vol. 16, no. 5, pp. 64-83,
1999.

(5] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in parallel
graph processing,” Parallel Process. Lett., vol. 17, no. 1, pp. 5-20, 2007.

[6] A. Janin, “Speech recognition on vector architectures.” Ph.D. dissertation,
Univ. California, Berkeley, CA, 2004.

(7] M. Ravishankar, “Parallel implementation of fast beam search for speaker-
independent continuous speech recognition,” Comput. Sci. Automat., Indian
Inst. Sci., Bangalore, India, Tech. Rep., 1993.

18] K. Agaram, S. W. Keckler, and D. Burger, “A characterization of speech rec-
ognition on modern computer systems,” in Proc. IEEE Int. Workshop Workload
Characterization (WWC-4), 2001, pp. 45-53.

19] S. Ishikawa, K. Yamabana, R. Isotani, and A. Okumura, “Parallel LVCSR al-
gorithm for cellphone-oriented multicore processors,” in Proc. [EEE Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, 2006, pp.
177-180.

[10] K. You, Y. Lee, and W. Sung, “OpenMP-based parallel implementation of a
continuous speech recognizer on a multi-core system,” in Proc. IEEE Int. Cont.
Acoustics, Speech. and Signal Processing (ICASSP), Taipei, Taiwan, 2009, pp.
621624,

[11] S. Phillips and A. Rogers, “Parallel speech recognition,” Int. J. Parallel Pro-
gram.,vol. 27, no. 4, pp. 257-288, 1999.

[12] P. R. Dixon, T. Oonishi, and S. Furui, “Fast acoustic computations using
graphics processors,” in Proc. IEEE Int. Conf. Acoustics. Speech, and Signal Pro-
cessing (ICASSP), Taipei, Taiwan, 2009, pp. 4321-4324.

[13] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau, “GPU accelerated
acoustic likelihood computations,” in Proc. Interspeech, 2008, pp. 964-967.

[14] J. Chong, Y. Yi, N. R. Satish, A. Faria, and K. Keutzer, “Data-parallel large
vocabulary continuous speech recognition on graphics processors,” in Proc. Int.
Workshop Emerging Applications and Manycore Architectures, 2008, pp. 23-35.

[15] M. Mohri, F. Pereira, and M. Riley, “Weighted finite state transducers in
speech recognition,” Comput. Speech Lang., vol. 16, no. 1, pp. 69-88, 2002,

[16] S. Kanthak, H. Ney, M. Riley, and M. Mohri, “A comparison of two LVR search
optimization techniques,” in Proc. Int. Conf. Spoken Language Processing (IC-
SLP), Denver, CO, 2002, pp. 1309-1312.

[17] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural support for
fine-grained parallelism on chip multiprocessors,” in Proc. Int. Symp. Computer
Architecture (ISCA), 2007, pp. 162-173.

[18] NVIDIA Corp., NVIDIA CUDA Programming Guide, Version 2.2 beta, Mar.
2009,

[19] G. Tur, A. Stolcke, L. Voss, J. Dowding, B. Favre, R. Fernandez, M, Frampton,
M. Frandsen, C. Frederickson, M. Graciarena, D. Hakkani-Tir, D. Kintzing, K.
Leveque, S. Mason, J. Niekrasz, S. Peters, M. Purver, K. Riedhammer, E. Shrib-
erg, J. Tien, D. Vergyri, and I Yang, “The CALO meeting speech recognition and
understanding system,” in Proc. IEEE Spoken Language Technology Workshop,
2008, pp. 69-72.

(20] A. Stolcke, X. Anguera, K. Boakye, O. Cetin, A. Janin, M. Magimai-Doss, C.
Wooters, and . Zheng, “The SRI-ICST spring 2007 meeting and lecture recognition
system,” Lect. Notes Comput. Sci., vol. 4625, no. 2, pp. 450463, 2008. sp

IEEE SIGNAL PROCESSING MAGAZINE

3 "Processinq Previous Page | Contents | Zoomin | Zoom out | Front Cover | Search Issue | Next Page

135 NOVEMBER 2009

