A Deep Red Phosphorescent Ir(III) Complex for Use in Polymer Light-Emitting Diodes: Role of the Arylsilyl Substituents

Youngmin You, Cheng-Guo An, Jang-Joo Kim, and Soo Young Park*

Department of Materials Science & Engineering, College of Engineering, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul 151-744, Korea

parksy@snu.ac.kr

Received May 8, 2007

Here we report the synthesis and electrophosphorescence of a new deep-red phosphorescent Ir(III) complex with spatially embracing and thus solubilizing arylsilyl-substituted ligands, Ir(III) tris(2-(2′-benzo[b]-thienyl)-5-(4′-triphenylsilylphenyl)pyridinato-N,C)3. A poly(N-vinylcarbazole) (PVK) film doped with this Ir(III) complex exhibited excellent phase homogeneity and showed saturated red electrophosphorescence of 2.7% maximum external quantum efficiency, whose Commission Internationale de l’Eclairage coordinates were (0.69, 0.30).

Introduction

Past works aimed at realizing large-area organic light-emitting diodes (OLEDs) have yielded promising results using solution processing with a fluorescent polymer-emitting layer. However, the inherently low efficiency of fluorescent polymer devices has limited their practical applications. A potential approach to overcoming this problem is to use phosphorescent Ir(III) complexes, which greatly outperform inherently low efficiency of the fluorescence-based devices.1-8

One of key challenges in developing Ir(III) complexes suitable for use in emitting layers in OLEDs is achieving both saturated red emission and high processibility (solubility).9,10 Generally, Ir(III) complexes are not sufficiently compatible to form homogeneous molecular dispersions in polymer films. This poor solubility, in turn, restricts device efficiency and lifetime.11 In this regard, macromolecular systems of (1) Ir(III) complexes covalently attached to polymer chains12a-c and (2) Ir(III)

* Author to whom correspondence should be addressed. Phone: 82-2-880-8331.

introducing tetraphenylsilyl group.\(^{14}\) We found that compared to \(\text{Ir}^{(ppy)}\), the modified \(\text{Ir}^{(ppy)}\) complex containing three identical 4-tetraphenylsilane-substituted ligands showed higher solubility and higher electrophosphorescence efficiency (32.8 cd/A) when doped in a poly(N-vinylcarbazole) (PVK) layer.

In addition to the improvement in solubility and phosphorescence efficiency that can be achieved by tetraphenylsilyl substitution, we sought to elucidate the phosphorescence color tuning effect of this type of substitution. Hence, in the present study, we sought to synthesize a saturated red-emitting Ir(III) complex with tetraphenylsilyl substitution and, additionally, to investigate the optical role of the tetraphenylsilyl substituents. To this end, we introduced a tetraphenylsilyle group into the 2-(2′-benzo[b]thienyl)pyridine ligand of the well-known red-emitting Ir(III) complex, btp-Iracac (Ir(III) bis(2′-(2′-benzo[b]-thienyl)pyridinato-N,C\(^3\)) \(^{5,6}\), in Scheme 1). To obtain deeper red phosphorescence than that of 2, we attached a tetraphenylsilyle group to the 5-position of the pyridine ring (see Chart 1). This modification should extend the \(\pi\)-conjugation in the ligand structure, causing a red-shift in the phosphorescence emission.

This approach is supported by quantum chemical calculations based on density functional theory (DFT), which predict that the lowest unoccupied molecular orbital (LUMO) of 1 is stabilized by 0.95 eV compared to that of 2. This stabilization is attributed to elongation of the region containing the LUMO electronic population, which is localized on the pyridine ring in 2, but on both the pyridine ring as well as the additional phenyl ring of tetraphenylsilane in 1 (see Chart 1). We also find that energy levels of the molecular orbitals neighboring the frontier orbitals (i.e., a set of HOMO-1 and HOMO-2, and a set of LUMO+1 and LUMO+2) approach those of the highest occupied molecular orbital (HOMO) or LUMO (see bottom of Chart 1). Considering the fact that excitations between molecular orbitals other than HOMO and LUMO also significantly contribute effective transitions,\(^{18}\) this prediction further supports stabilization of the phosphorescent state of 1. Thus, tetraphenylsilyle introduction on the Ir(III) complex appears to lower the optical transition energy, making it possible to achieve deep-red phosphorescence. These findings indicate that the introduction of structural motifs utilizing arylsilane substituents is a convenient way to achieve both enhanced processability and deep-red phosphorescence of Ir(III) complexes.

Results and Discussion

The tetraphenylsilyle-substituted ligand 4 was synthesized by successive palladium-catalyzed Suzuki–Miyaura reactions. Specifically, lithiation of 1,4-dibromobenzene with n-BuLi (1.6 M in hexane) followed by substitution with a triphenylsilyle chloride gave the bromine-terminated tetraphenylsilane in quantitative yield. Then, a further lithiation with n-BuLi and subsequent reaction with trimethylborate afforded the corresponding methyl boronate, which was further transformed to the corresponding boronic acid by treatment with aqueous 2 N HCl. Another part of the ligand, 2-(2′-benzo[b]thienyl)-5-bromopyridine, was easily obtained via Suzuki–Miyaura reaction of 5-bromo-2-iodopyridine and 2-benzo[b]thiopheneboronic acid. Exclusive coupling at the iodine of pyridine was observed, which was confirmed by mass spectrometry. Finally, the remaining bromine of the pyridine was coupled with triphenyl-

silylbenzeneboronic acid by further Suzuki-Miyaura reaction to give the chelating ligand 4 (2-(5-(4-triphenylsilylphenyl)-pyridyl)benzo[b]thiophene). Interestingly, a substantial amount (about 30%) of a homo-coupled adduct of the 4-triphenylsilyl-benzeneboronic acids, 4,4′-bis(triphenylsilyl)biphenyl, was observed during the reaction. The ligand 4 was thoroughly purified by silica gel column chromatography prior to the chelation reaction.

The Ir(III) complex was synthesized via the standard two-step procedure because direct formation of the tris-chelate from Ir(acac)₃ in the presence of excess ligand requires harsh reaction conditions and generally gives low yields. Nonoyama reaction of the synthesized ligand 4 and IrCl₃·xH₂O in a mixed solvent system of 2-ethoxyethanol and water (3:1 by volume) gave the cyclometalated μ-chloride-bridged Ir(III) dimer in 76% yield. Subsequently, the chloride of the μ-chloride-bridged Ir(III) dimer was substituted by the additional chelating ligand 4 with the assistance of potassium carbonate in a thoroughly degassed glycerol at 240 °C. The crude product was purified by silica gel column chromatography followed by recrystallization in

(16) Lohse, O.; Thevenin, P.; Waldvogel, E. *Synlett* 1999, 1, 45.
for a poly(methyl methacrylate) film doped with photoluminescence quantum yield was observed to be 17% from nates gives (17) Transformation of the phosphorescence spectra of the film states pyridine successfully yielded deeper red phosphorescence. The peak wavelengths of 1 are related to the structure of the arylsilyl moiety, and it is noteworthy that such improvements can be accomplished using an alkyl-free structure.

Another important issue in synthesizing 1 was to achieve deep red emission. As shown in Figure 2, the peak wavelengths of 1 are 640 and 646 nm in the solution and the film states, respectively, compared to 621 and 625 nm for 2 (Table 1). (The small red shift of the peak wavelength in the film state of 1 is likely due to a reduction of the dihedral angle between the phenyl and the pyridine rings.) The peak wavelengths of 1 are thus bathochromically shifted relative to those of 2 by ca. 20 nm, implying that the additional phenyl ring conjugated to the pyridine successfully yielded deeper red phosphorescence. Transformation of the phosphorescence spectra of the film states into Commission Internationale de L’Eclairage (CIE) coordinates gives (x, y) = (0.69, 0.31) for 1 compared to (0.68, 0.31) for 2, confirming the deeper red emission of 1. The absolute photoluminescence quantum yield was observed to be 17% from a poly(methyl methacrylate) film doped with 1 (7 wt % doped) compared to 11% for the corresponding film doped with 2.17

(17) The poly(methyl methacrylate) host was used in order to exclude the energy transfer from the host. See the Supporting Information for experimental details.

FIGURE 1. Image restoration microscope images of spin-coated PVK films doped with 60 µmol/g of 1 (a) or 2 (b). Excitation wavelength was 360 ± 20 nm from a 10 mW mercury lamp. The red color is pseudo color, and the length of scale bar corresponds to 90 µm.

FIGURE 2. Absorption and photoluminescence spectra of 1 in the solution state (10 µM in Ar-saturated PhMe) (black open circles) and photoluminescence spectrum of 1 in the film state (PVK film doped by 7 wt % of 1) (black filled circles). The corresponding spectra of 2 are shown for comparison (gray open triangles for the solution state and gray filled triangles for the film state). Inset: Electrophosphorescence spectrum of 1.

This efficiency is satisfactory if we consider the very high purity of red phosphorescent color of the film.18 Finally, we constructed polymer light-emitting diodes employing 1 as a red phosphorescent emitter. A heterostructured polymer-based device was fabricated with the configuration of PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)) as a hole injection layer, an emitting layer of PVK doped with PBD (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) and I as electron transport and emitting components, respectively. BA1q (bis-(2-methyl-8-quinolinolate)-4-(phenylpheno- nolate) aluminum) as an exciton blocking layer, and LiF:Al as a cathode. PVK was selected as the polymer host because of its high hole mobility (~10^{-5} cm2/Vs), high glass transition temperature, and good film forming property and because its HOMO and triplet state energy levels match those of 1. When we consider the redox potentials of 1 measured by an electrochemical method, efficient hole and electron trapping inside the PVK was expected to give exclusive emission from I. Consistent with the excellent compatibility of I with PVK established above, a high-quality spin-coated I/PVK film was easily realized during device fabrication. From the device, saturated red electrophosphorescence was observed with a peak wavelength of 640 nm accompanied by a shoulder at 680 nm, giving a CIE coordinate of (0.69, 0.30) (Figure 3). A peak external quantum efficiency of 2.7% was recorded at a current density of 0.57 mA/cm2, and a luminance of 1018 cd/m2 was observed at a current density of 132 mA/cm2.
Deep Red Phosphorescent Ir(III) Complex

Experimental Section

Synthesis of 2-(2-benzothienyl)-5-bromopyridine. 5-Bromo-2-iodopyridine (10.0 g, 35.2 mmol), benzo[5-phenyl]-2-bromopyridine (6.21 g, 34.9 mmol), and tetrakis(triphenylphosphine)palladium-

TABLE 1. Optical and Electrochemical Properties of Ir(III) Complexes

<table>
<thead>
<tr>
<th>Entry</th>
<th>(\lambda_{ab}) (nm)</th>
<th>(\lambda_{g}) (nm)</th>
<th>PLQY (%)</th>
<th>(E_{ox}) (V)</th>
<th>(E_{red}) (V)</th>
<th>IP (eV)</th>
<th>CIE coordinate (x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>308 (4.75), 326 (4.69)</td>
<td>640</td>
<td>17</td>
<td>−0.72, −1.35</td>
<td>1.55/0.86</td>
<td>−5.36</td>
<td>(0.69, 0.30)</td>
</tr>
<tr>
<td>2</td>
<td>309 (4.52), 324 (4.44), 349 (3.98), 497 (3.54)</td>
<td>621</td>
<td>11</td>
<td>−0.77, −1.36</td>
<td>1.40/0.83</td>
<td>−5.33</td>
<td>(0.68, 0.31)</td>
</tr>
</tbody>
</table>

Synthesis of 2-(5-(4-Triphenylsilylphenyl)pyridyl)benzo[b]thiophene (4). The same procedure for 2-(2-benzothienyl)-5-bromopyridine was applied to give white powder (4.10 g, 7.51 mmol) in 58% yield. \(^*\)H NMR (300 MHz, CDCl3) \(\delta \) 7.35–7.46 (m, 15H), 7.59–7.60 (m, 5H), 7.67 (d, \(J = 8.3 \) Hz, 2H), 7.81 (m, 4H), 7.88 (m, 3H), 8.91 (d, \(J = 1.6 \) Hz, 1H). \(^*\)C NMR (CDCl3, 125 MHz): \(\delta \) 119.4, 122.8, 123.3, 124.3, 124.4, 128.1, 128.5, 132.5, 132.6, 133.1, 133.3, 134.6, 137.7, 140.5, 140.9, 147.3. MS (FAB) \(m/z \) 546 (M⁺). Anal. Calcd for C25H20SiN: C, 81.83; H, 5.44; N, 2.18. Found: C, 81.93; H, 5.48; N, 2.14.

Synthesis of \(\mu \)-Chloride-Ir(III) Dimer. The cyclometalating ligand 4 (3.00 g, 5.50 mmol) and iridium(III) chloride hydrate (0.41 g, 1.37 mmol) were solvated in the mixed solvent system of 2-EtOEtOEt:water (30 mL:10 mL). After a thorough degassing procedure was performed, the temperature was maintained at 145 °C for 20 h. Red precipitates were observed when the reaction mixture was cooled down to room temperature. Filtration gave a red powder which further washed with the mixed solvent system of acetone:EtOH:n-hexane (5 mL:5 mL:40 mL). Then, the filtrate was dissolved in CHCl₃ and recrystallized to give red crystals (0.532 g, 0.221 mmol) in 68%. \(^*\)H NMR (spectral shape was broad and structureless; splitting patterns were hard to assign. 500 MHz, CDCl₃) \(\delta \) 7.37 (m, 8H), 7.43 (m, 24H), 7.48 (m, 12H), 7.63 (m, 28H), 7.72 (s, 4H), 7.73 (s, 4H), 7.83 (m, 4H), 7.87–7.92 (m, 12H), 7.97 (m, 4H), 8.95 (s, 4H). \(^*\)C NMR (CDCl₃, 75 MHz): \(\delta \) 119.2, 119.9, 122.3, 122.8, 123.0, 124.0, 124.2, 124.4, 124.8, 125.4, 125.6, 125.8, 126.5, 126.7, 126.8, 127.7, 128.1, 128.2, 128.3, 128.4, 128.7, 129.9, 130.0, 130.1, 131.3, 132.5, 133.3, 133.6, 134.1, 135.4, 135.7, 136.3, 136.5, 137.1, 137.4, 140.7, 141.0, 141.9, 143.0, 144.1, 144.5, 147.9, 148.1, 149.7, 152.2, 154.2, 162.9, 163.3, 163.5, 171.4, 171.5. MALDI-TOF-MS \(m/z \) 2634.50, calc'd for C₁₄₃H₂₀Cl₂Ir₂N₅S₄Si₂, 2632.49.

Synthesis of Ir(III) Tris(2-(2-benzo[b]thienyl)-5-(4-triphenylsilylphenyl)pyridinato-N,C) (1). To a glycerol solution (10 mL) containing 4 (0.102 g, 0.208 mmol) and \(\mu \)-chloride-Ir(III) dimer (0.200 g, 0.0830 mmol) was delivered potassium carbonate (0.115 g, 0.830 mmol). Prior to raising the temperature, the reaction mixture was thoroughly degassed via repetitive vacuum-freeze-thaw technique. Then, refluxing at 220 °C was performed for 20 h. After being cooled down to room temperature, the reaction mixture was poured into water. The red precipitate was further washed with water (100 mL), MeOH (50 mL), and then ether (50 mL). A dark orange-colored powder was obtained after silica gel column purification with CH₂Cl₂ eluent. Finally, recrystallization in PhMe gave the red phosphorescent product (0.131 g, 0.0790 mmol) in 48% yield. \(^*\)H NMR (500 MHz, CDCl₃) \(\delta \) 6.34 (d, \(J = 8.1 \) Hz, 1H), 6.43 (d, \(J = 9.1 \) Hz, 1H), 6.59 (d, \(J = 8.1 \) Hz, 1H), 6.67 (d, \(J = 8.1 \) Hz, 1H), 6.77–6.84 (m, 3H), 7.09–7.14 (m, 6H), 7.26 (d, \(J = 8.4 \) Hz, 2H), 7.34–7.47 (m, 36H), 7.52–7.54 (m, 16H), 7.62 (d, \(J = 6.6 \) Hz, 3H), 7.65 (m, 2H), 7.73 (d, \(J = 5.6 \) Hz, 2H), 7.80 (m, 2H), 8.02 (d, \(J = 1.6 \) Hz, 1H), 8.07 (d, \(J = 1.4 \) Hz, 1H). \(^*\)C NMR (CDCl₃, 125 MHz): \(\delta \) 118.2, 118.7, 119.2, 122.3, 122.8, 123.0, 124.0, 124.2, 125.3, 125.4, 125.6, 125.8, 126.5, 126.7, 127.7, 127.8, 128.1, 128.2, 128.3, 128.4, 128.7, 129.9, 130.0, 130.1, 131.3, 132.5, 133.3, 133.6, 134.1, 135.4, 135.7, 136.3, 136.5, 137.1, 137.4, 140.7, 141.0, 141.9, 143.0, 144.1, 144.5, 147.9, 148.1, 149.7, 152.2, 154.2, 162.9, 163.3, 163.5, 171.4, 171.5. MS (FAB) \(m/z \) 1431.50, calc'd for C₁₄₃H₁₉₃Cl₂Ir₂N₅S₄Si₂, 1431.49.

In summary, we have designed and synthesized a new deep-red-emitting Ir(III) complex with excellent solubility and efficiency. Arylsilane-based alkyl-free substituents successfully facilitated both bathochromically shifted phosphorescence and higher phase homogeneity of the Ir(III) complex inside a PVK host. Polymer organic light-emitting devices based on the Ir(III) complex exhibited a peak electrophosphorescence wavelength of 640 nm along with a shoulder around 680 nm; which is deeper red (CIE \((x,y) = (0.69, 0.30)\)) than for the original Ir(III) complex without a tetraphenylsilyl group at the Ir center. The synthesized complexes showed the electrophosphorescence spectra of the Ir(III) complexes. Reversible wave.
128.4, 128.7, 129.9, 130.0, 130.1, 131.3, 132.5, 133.3, 133.6, 134.1, 134.4, 134.5, 135.7, 136.3, 136.6, 137.1, 137.3, 137.4, 137.9, 138.0, 138.9, 142.1, 143.0, 144.1, 144.5, 147.9, 148.3, 148.4, 149.4, 153.0, 154.9, 162.9, 164.2, 165.6, 173.1, 177.2. MALDI-TOF-MS m/z: 1826.38, calcd for C_{111}H_{78}IrN_3S_3Si_3 = 1825.43. Anal. Calcd for C_{111}H_{78}IrN_3S_3Si_3: C, 72.99; H, 4.30; N, 2.30; S, 5.27. Found: C, 72.91; H, 4.30; N, 2.18; S, 5.29.

Acknowledgment. This work was supported in part by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. Program funded by the Ministry of Science and Technology (No.2006-03246) and also by Dongwoo FineChem Co.

Supporting Information Available: Copies of spectroscopic identification including ^1H, ^13C NMR, and MALDI-TOF mass spectra, DFT calculation results, and electrochemical data. This material is available free of charge via the Internet at http://pubs.acs.org.

JO070968E