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Co-Poly(Arylene Ether Sulfone)s for

Low-Loss and Low-Birefringence
Waveguide Devices
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Abstract—Optical properties such as refractive index, bire-
fringence, thermal stability, and optical loss of fluorinated
co-poly(arylene ether sulfide)s and co-poly(arylene ether sulfone)s
were investigated, and they are related to the molecular structure
of the polymers. The refractive index of the optical polymers varies
in the range of 1.51 1.60, and its variation is well described by
a Lorentz–Lorenz equation. Their birefringence varies between
0.0027 0.0039 for the sulfides series and between 0.0009 0.0025
for the sulfone series at a 1.55- m wavelength, respectively. The
birefringence is analyzed based on the microscopic anisotropic
ratio of the polarizability of the molecular repeating unit resulting
in good linear relationship between them within the polymer
groups. This result implies that the molecular calculation can be
utilized to design polymers with low birefringence. The propa-
gation losses of the optical polymers were 0.1 0.3 and 0.2 0.5
dB/cm at the wavelength of 1.3 and 1.55 m, respectively. The
optical losses are inversely proportional to fluorine content. The
polymers have good thermal stability upon long-term thermal
stress at 100 C for 1000 h and short-term thermal stress at 300
C for 1 h.

Index Terms—Fluorinated poly(arylene ether sulfide)s, fluori-
nated poly(arylene ether sulfone)s, low-birefringence, low-loss, op-
tical polymer waveguides, thermally stable.

I. INTRODUCTION

POLYMER optical waveguides are attractive as optical com-
ponents in optical interconnects and optical communication

systems because of their potential of easy low-temperature and
low-cost fabrication. The key requirements of optical waveguide
materials include low optical loss in the infrared (IR) region, high
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thermal stability, refractive-index controllability, low birefrin-
gence, and good adhesion with silicon substrates. Hydrocarbon
polymers have high optical loss in the IR communication re-
gion due to the vibrational overtones of the carbon–hydrogen
(C–H) bond. Optical loss is significantly reduced by substitution
of hydrogen in the C–H bond by fluorine or deuterium. Many
polymers such as deuterated or fluorinated acrylate [1], [2],
benzocyclobutene [3], perfluorocyclobutane [4], cross-linkable
fluorinated dendrimer [5], fluorinated polyimide [6]–[9], deuter-
ated polyfluoromethacrylate [10], deuterated polysiloxane [11],
polycarbonate [12]–[14], fluorinated poly(arylene ether) [15]
and fluorinated poly(arylene ether sulfides) [16], [17] have been
synthesized for optical waveguide applications.

Fluorinated poly(arylene ether)s developed for interlayer di-
electric materials are good candidates for optical waveguide de-
vices due to their excellent thermal stability, mechanical prop-
erties, and low absorption at the near-IR region [18], [19]. How-
ever, the material has some drawbacks, such as poor adhesion
to substrates. This paper describes the structure–property re-
lationships of fluorinated co-poly(arylene ether sulfide)s and
co-poly(arylene ether sulfone)s for low-loss and low-birefrin-
gence polymeric optical waveguides. An attempt is made to es-
tablish structure–property relationships by relating the chem-
ical structures of individual fluorinated polymers to their op-
tical properties, such as refractive index, birefringence, and op-
tical loss. These polymers have high optical transparency in the
IR region because of the replacement of C–H bonds with C–F
bonds. In addition, these polymers have high thermal stability,
good processability, and good refractive-index controllability
upon changing the copolymer composition. Inclusion of sulfide
and sulfone groups in the polymers improves adhesion to silicon
substrates. These properties allow us to fabricate low-loss and
thermally stable single-mode optical waveguides and a variety
of optical devices, such as straight channel waveguides, direc-
tional couplers, power splitters, and other optical devices [20].

II. EXPERIMENTAL

A. Materials

Cross-linkable fluorinated co-poly(arylene ether sulfide)s
and co-poly(arylene ether sulfone)s were synthesized by the
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Fig. 1. Chemical structure of co-poly(arylene ether sulfide)s and co-poly(arylene ether sulfone)s. Copolymers were obtained by the combination of monomers
(A) and (B) and cross-linkable end capper.

copolymerization of monomers (A) and (B) and the cross-link-
able end capper shown in Fig. 1. They include pentafluo-
rophenylsulfide (5FSI), pentafluorophenylsulfone (5FSO)
as monomers (A); 4,4 -(hexafluoroisopropylidene)diphenol
(6FBPA), 4,4 -(trifluoromethylphenylisopropylidene)diphenol
(3FBPA), 9-9 -Bis(4-hydroxyphenyl)fluorene (FR), phe-
nolphthalein (PhT), 4-trifluoromethylphenyl-4 ,4 -(bishy-
droxyphenyl)phosphine oxide (TF3POH), 3,5-bis(trifluo-
romethyl)phenyl-4 ,4 -(bishydroxypheyl)phosphine oxide
(BTFPOH) as monomers (B); and 3-ethynylphenol (EP) as
the cross-linkable end capper. The molecular structure of the
building blocks of the cross-linkable fluorinated co-poly(ary-
lene ether sulfide)s and co-poly(arylene ether sulfone)s are
shown in Fig. 1. The sulfide and sulfone group in the polymer
were introduced to improve adhesion to Si substrates. To in-
crease the solvent resistance during the multilayer overcoating,
we introduced the 3-ethynylphenol (EP) in the polymers as
a cross-linkable end capper. The number-average molecular
weights and polydispersities of the polymers
were in the range of 12 000 25 000 and 2.2 3.2 with
polystyrene standards, respectively. Details of the synthetic
procedure were reported elsewhere [16], [21].

B. Measurement

The refractive indexes and of the polymer films
were measured with a Sairon SPA-3000 prism coupler at the
wavelength of 0.633, 0.83, 1.3, and 1.55 m. This prism coupler
has the resolution of , which was confirmed using a
standard sample (fused silica, at 1.55 m) with
the accuracy of . To measure the refractive index
and fabricate optical waveguides, the polymers were coated on
Si substrates by spin-casting the polymer solution dissolved in
cyclohexanone at the concentration of 30 50 wt.%. The so-
lution was filtered with a 0.2- m Teflon membrane filter before
spin-coating. After coating, the polymer films were baked at 270
C for 2 h on a hotplate in a nitrogen atmosphere to produce the

Fig. 2. Refractive index of various fluorinated polymers for TE polarization as
a function of wavelength. The experimental data (point) is well described with
Sellmeier’s equation (solid line).

films with the thickness of 1 15 m. The various combina-
tions of monomers selected from (A) and (B) and cross-linkable
end capper allows precise tailoring of the refractive index.

Low optical loss in the IR region is one of the key require-
ments of optical waveguides materials. The high-index liquid
immersion technique was employed to measure the absorption
loss of the synthesized materials using a Sairon SPA-3000 [22].
In the technique, light is coupled to a slab waveguide by prism
coupling. After propagating a certain distance, the light is out-
coupled from the waveguide by immersing it in a high-index
liquid, and the out-coupled optical power is measured as a func-
tion of the propagation distance.

The loss spectra of the optical waveguides were measured in
the range of 1100–1700 nm. Broad-band light (HP 83 437A) was
directly launched into the fabricated straight channel waveguides
through a single-mode optical fiber, and output light was moni-
tored with an optical spectrum analyzer (HP 86 140B).



366 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 1, JANUARY 2005

Fig. 3. Dependence of the refractive indexes and birefringence (�n = n � n ) of (a) 5FSI/6FBPA-co-5FSI/FR-EP and (b)
5FSO/6FBPA-co-5FSO/3FBPA-EP on co-polymer compositions.

III. RESULTS AND DISCUSSION

A. Refractive Index and Birefringence

The refractive indexes and birefringence
were measured with the prism coupler. Fig. 2 shows the
refractive index for a number of the basic polymer sys-
tems as a function of wavelength. The dispersion of re-
fractive index is well described with Sellmeier’s equation
given by A B C , where A, B, and C
are constants. The refractive index can be controlled using
the co-polymerization of various monomers, as shown
in Fig. 3 for (a) 5FSI/6FBPA-co-5FSI/FR-EP and (b)
5FSO/6FBPA-co-5FSO/3FBPA-EP. The controllability of
refractive indexes enables for the use of the materials for core
and cladding layers of various optical waveguide devices.

At optical frequencies far from resonance (absorption), the di-
electric constant equals the square of the refractive index

. Consequently, we can relate the refractive index to the
molecular polarizability by the Lorentz–Lorenz equation [23]

(1)

where is the molecular weight of the polymeric repeat unit,
is the density, is Avogadro’s number, is the molecular

polarizability, is the molar polarization, and is the molar
refraction. The equation provides a link between a microscopic
quantity (the molecular polarizability) and a macroscopic quan-
tity (the refractive index). From the Lorentz–Lorenz equation,
we can sum the atomic and group refraction to give the molar re-
fraction for a repeating unit at the wavelength of 589 nm
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TABLE I
CALCULATED MOLAR REFRACTIONS (R ) AND REFRACTIVE INDEXES (n) AT 589-nm WAVELENGTH,

AND CALCULATED DENSITY (� ) AND EXPERIMENTALLY MEASURED DENSITY (� )
FOR THE POLYMERS AND GENERAL POLYMERS

[23]. The refractive indexes at 589-nm wavelength were calcu-
lated from the Sellmeier’s equation shown in Fig. 2. The molar
refraction and refractive indexes at 589-nm wavelength are sum-
marized in Table I, and they are plotted in Fig. 4. The molar
refraction is linearly proportional to , in-
dicating that the Lorentz–Lorenz equation relates the refractive
index to molar refraction very well. The density of the polymers
can be calculated from the slope in Fig. 4, and they are in the
range of 1.35–1.50, as summarized in Table I. The densities are
reasonable if we consider that the polymers are fluorinated and
contain a sulfone or sulfide group. In the table, the calculated
density of common polymers such as polymethylmethacrylate,
polystyrene, polyamides, polycarbonate, perfluorocyclobutane
(PFCB), Cytop, and polyimide (6FDA-TFDB) are included and
compared with the experimentally obtained density [7], [23],
[24]. The calculate densities match very well with the experi-
mental data. This good relationship between the molar refrac-
tion (the polarizability) and suggests that
refractive index can be predicted prior to synthesis from the
molecular structure if density is known [25]. The accuracy of
the refractive index can be 0.005 for a 0.01 density difference,
which is an acceptable resolution prior to synthesis for wave-
guide applications.

The birefringences of various co-polymers are summarized in
Table II. By changing the co-polymer composition, the birefrin-
gence was reduced significantly down to 0.0009 at a wavelength

Fig. 4. Calculated molar refraction (R ) dependence onM(n �1)=(n +
2) with Lorentz–Lorenz equation for general polymers, co-poly(arylene ether
sulfide)s, and co-poly(arylene ether sulfone)s. From the slope (1=�), the density
of polymers can be calculated.

of 1.55 m. This is much lower than those of fluorinated poly-
imides [7]. For anisotropic media, which have the difference be-
tween the refractive indexes in the two principal directions, the
birefringence must be related to the polarizability differ-
ence between the polymer chain axes ( , ) and perpendic-
ular to the chain axes and molecular orientations in bulk
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TABLE II
BIREFRINGENCE (�n) AND THERMAL STABILITY OF CO-POLY (ARYLEN ETHER SULFIDE)S AND

CO-POLY (ARYLEN ETHER SULFONE)S

material. In the microscopic view, the quantities of interest are
the polarizability components and their anisotropic ratio de-
fined by [26]

(2)
Thus, the birefringence must be proportional to anisotropic

ratio of linear polarizability (microscopic view) and molecular
orientations in bulk material (macroscopic view) as in

(3)

If the anisotropic ratio is zero, will be zero. Under this
condition, molecular orientations in bulk material do not have
influence on birefringence. On the other hand, however, if the
chain conformations of the polymers are random with no pre-
ferred orientation, i.e., , the birefringence will be zero be-
cause the molecular anisotropic ratio of will be cancelled out
in macroscopic scale, resulting in . Recently, the factors
influencing birefringence have been widely investigated, such as
the spin-coating condition [27], substrate material [27], thermal
treatment condition [27], [28], film thickness [27], [29], [31],
humidity condition [29], [30], [32], and solvent system [31].
Most of the previously mentioned factors are related to molec-
ular orientations in bulk materials.

In this study, the effect of the molecular structure on the bire-
fringence for various co-polymers is theoretically investigated
by relating the molecular structure to the molecular polariz-
ability calculated by the MOPAC (Molecular Orbital Package)
program [33] (CAChe Worksystem ver. 5.02, Fujitsu). For the
purpose, we assumed that the orientational factor of polymer
chain is equal for all polymer films. It is a reasonable as-
sumption for our system because we used the same solvent,
spin-coating condition, thermal treatment, film thickness, and
Si substrate. Therefore, we can investigate the relationship be-
tween the birefringence and anisotropic ratio . For the cal-
culation of , only one repeating unit was considered [33], and
the molecular repeating unit was rotated to have the principal

Fig. 5. Movement and rotation of orignal coordinate to the principal axes x,
y, z.

axes , , and as shown in Fig. 5. After the rotation, the ge-
ometry was optimized using PM5 parameters to calculate the
polarizability component , , and .

Table III summarizes the calculated polarizability compo-
nents and anisotropic ratio, and Fig. 6 shows a plot between
the experimentally obtained birefringences against the calcu-
lated anisotropic ratio. The birefringence is more or less pro-
portional to the anisotropic ratio for the co-polymer system.
Interestingly enough, however, sulfone containing co-polymer
showed a larger proportional constant than sulfide containing
co-polymer. It is reasonable because the sulfone group has a
larger kink angle. The calculation using more repeating units
than one resulted in slight modification in the results at the ex-
pense of much longer computational time.

B. Optical Losses of Slab and Channel Waveguides

The optical losses of fluorinated co-poly(arylene ether sul-
fide)s and co-poly(arylene ether sulfone)s for slab and channel
waveguides were measured at the wavelengths of 1.3 and
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TABLE III
CALCULATED POLARIZABILITY COMPONENTS (� , � , AND � ) AND

ANISOTROPIC RATIO (�) OF THE REPEATING UNIT OF CO-POLY(ARYLEN

ETHER SULFIDE)S AND CO-POLY(ARYLEN ETHER SULFONE)S

Fig. 6. Dependence of birefringence on anistropic ratio of calculated
polarizability for co-poly(arylene ether sulfide)s and co-poly(arylene ether
sulfone)s at the wavelength of 1.55 �m.

1.55 m. The slab waveguides were prepared by spin-coating
the materials on a silicon substrate coated with ZP 2145M
( at a 1.55- m) layer. After coating, the polymer
films were baked at 270 C for 2 h on a hotplate in nitrogen at-
mosphere to produce the films with the thickness of 6 8 m.
Optical absorption loss of the slab waveguides can be obtained
from the slope in the Fig. 7. The measured optical loss is close
to the absorption loss of the material constituting the waveguide
because it does not include the optical loss due to the fabrication
imperfections of channel waveguides. The measured losses at
1.3 and 1.55 m for TE and TM polarizations are summarized
in Table IV for various polymers. The propagation losses of
fluorinated polymers were 0.1 0.3 and 0.2 0.5 dB/cm at the
wavelengths of 1.3 and 1.55 m, respectively. The optical
losses of slab waveguides were found to be dependent on fluo-
rine content per repeat unit as shown in Fig. 8. The optical loss
decreases with increasing fluorine content. The figure indicates

Fig. 7. Optical losses from slab waveguides of co-poly(arylene ether sulfide)s
at (a) 1.55 �m and (b) 1.3 �m for TE polarization measured by the high-index
liquid immersion technique.

that the optical loss less than 0.1 dB/cm can be obtained with
fluorine content of 50 and 60 wt.% at the wavelengths of 1.3
and 1.55 m, respectively.

We also measured the optical loss of single-mode channel
waveguides using the cutback method for various materials.
The photolithography and RIE processes were used to fabricate
the single-mode polymer optical waveguides. A core layer
was spin-coated onto a cladding layer on an Si substrate and
baked at 270 C for 2 h in a nitrogen atmosphere. On the core
layer, a 100-nm-thick silicon nitride mask was deposited by
plasma-enhanced chemical-vapor deposition (PECVD) using
SiH and N at 150 C. AZ5214 photoresist was spin-coated
onto the silicon nitride layer to define the waveguides and
patterned using the conventional photolithography. The silicon
nitride mask was patterned by RIE using CF gas with the
developed photoresist as an etch mask, and the pattern was
transferred to the core layer to form a ridge/channel waveguide
by O RIE. Finally, the upper-cladding layer was spin-coated
[17]. A scanning electron microscope (SEM) micrograph of
a typical fabricated single-mode waveguide is displayed in
Fig. 9(b). The results of the optical loss measurement from the
channel waveguides made of co-poly(arylene ether sulfide)s
and co-poly(arylene ether sulfone)s are shown in Fig. 9(a) and
summarized in Table IV for some of the materials. The optical
loss due to fabrication imperfections of the channel waveguides
can be determined from the difference in the propagation loss
between the slab and channel waveguide, and it turns out to be
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TABLE IV
OPTICAL LOSSES OF CO-POLY (ARYLENE ETHER SULFIDE)S AND CO-POLY(ARYLENE ETHER SULFONE)S

Fig. 8. Dependence of optical losses on fluorine content for slab waveguides
of co-poly(arylene ether sulfide)s at 1.3- and 1.55-�m wavelengths.

less than 0.2 dB/cm. Optical losses as low as 0.4 dB/cm were
obtained for channel waveguides.

C. Polarization-Dependent Loss

Because polarization-dependent loss (PDL) of the rib wave-
guide is one of the main reasons for the polarization dependence
of the waveguide devices, the reduction of PDL has been a hot
issue in device fabrications. The PDL value is defined as the dif-
ference of the optical losses between the TE and TM modes of a
channel waveguide. It is thought to be due to different confine-
ment for TE and TM polarizations in channel waveguides. Min
et al. [34] reported that PDL increased considerably when the
slab-waveguide thickness exceeded a certain size and explained
that it is due to a mode coupling between the TM mode of the rib

Fig. 9. (a) Propagation loss of single-mode channel waveguides measured
by the cutback method and (b) SEM photograph of the fabricated straight
waveguide.

waveguide and TE mode of the slab waveguides via anisotropic
thermal stress distribution. However, the PDL is a very small
value in the channel waveguide due to no phase matching for
mode coupling.

An additional contribution of the PDL in channel waveguides
comes from the sidewall roughness, which largely depends on
the process conditions. The roughness of the etched sidewalls
of the waveguide structures should be as small as possible in
order to reduce the loss due to light scattering. In this case, the
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Fig. 10. Loss spectra of optical channel waveguides of 5FSI-PhT-EP and
5FSO-3FBPA-EP.

scattering loss is larger for TE polarization than TM, resulting
in the large PDL.

In order to reduce PDL in polymer optical waveguides, the
low-birefringence and low-thermal stress of optical polymers,
small-sidewall roughness of the channel waveguide, and the
well-optimized waveguide structure are required. The PDL
value of our fabricated single-mode channel waveguide was
0.02 dB/cm at a wavelength of 1.55 m. This result indicates
that the fabricated waveguide has good optical properties and
well-optimized structure.

D. Loss Spectra in the Infrared Region

The loss spectra of the optical waveguides of the materials are
shown in Fig. 10. Three peaks are observed in the IR regions of
the loss spectra of the synthetic polymers: the third harmonics
of the stretching vibration of the C–H bond ( , 1.1 m);
the combination of the second harmonics of the stretching and
bending vibration of the C–H bond ( , 1.4 m); and
the second harmonics of the stretching vibration of the C–H
bond ( , 1.65 m). IR regions of transparence exist near
1.3 and 1.55 m, the wavelengths of interest for telecommuni-
cations.

E. Thermal Stability

Thermal stability is an important issue for optical com-
ponents. The thermal stability of the waveguide materials
was studied by a variety of techniques such as differential
scanning calorimetry (DSC), thermal gravimetric analysis
(TGA), refractive-index change at 100 C, and optical loss
measurements at different temperatures (250–380 C). DSC
analysis was performed to study the effect of curing on the

and the curing properties of the polymers. As the scan
number of DSC was increased, the increased from 120 C
to 170 C for 5FSI-6FBPA-EP. An intense exothermic peak
in the first scan of DSC was observed due to the reaction of
ethynyl moiety. In the third scan (as the degree of curing was
increased), this exothermic peak disappeared indicating the
curing reaction is almost complete during the first two scans in
the DSC [16]. The glass transition temperatures of the synthetic
polymers were higher than 200 C except 5FSI-6FBPA-EP
and 5FSI-3FBPA-EP. The thermal decomposition temperature,
defined as 5% weight loss temperature at a heating rate of

Fig. 11. TGA of the various polymers at a heating rate of 10 C/min in a
nitrogen atmosphere.

Fig. 12. Optical loss after storing at different temperatures in an air atmosphere
for 1 h. Theses polymers are thermally stable up to 300 C for 1 h.

10 C/min in a nitrogen atmosphere, was higher than 400 C,
except 5FSI-TF3POH-EP and 5FSO-PhT-EP, as shown in
Fig. 11, which is high enough for optical applications. The re-
fractive index of one of the polymers did not change even after
storing at 100 C for 1000 h [17]. These results demonstrate
the long-term thermal stability of the polymers.

Short-term thermal stability of the polymers was examined by
the measurement of the change of the optical loss after storing
the sample at high temperatures for 1 h. The change of optical
loss was measured using the high-index liquid immersion tech-
nique. The optical loss does not change over a wide range of
temperatures up to 300 C as shown in Fig. 12, suggesting that
our polymers are thermally stable up to 300 C for 1 h. Because
of yellowing effects, however, the optical losses steeply increase
above 320 C. In conclusion, the polymers have good thermal
stability upon long-term thermal stress at 100 C for 1000 h and
short-term thermal stress at 300 C for 1 h.

IV. CONCULSION

Optical properties such as refractive index, birefringence,
thermal stability, and optical loss of fluorinated co-poly(ary-
lene ether sulfide)s and co-poly(arylene ether sulfone)s were
investigated, and they are related to the molecular structure
of the polymers. The refractive index of the optical polymers
varies in the range of 1.51 and 1.60, and its variation is well
described by the Lorentz–Lorenz equation. Birefringence of
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the polymer-containing sulfone group is lower than the sulfide
group containing molecules. Their birefringence varies between
0.0027 and 0.0039 for the sulfide series and between 0.0009
and 0.0025 for the sulfone series at 1.55 m wavelength,
respectively. The difference is supposed to come from the dif-
ference of the bond angle of the groups leading to more random
molecular configuration with the sulfone group. The birefrin-
gence is analyzed based on the microscopic anisotropic ratio
of the polarizability of the molecular repeating unit, resulting
in a good linear relationship between them within the polymer
groups (sulfone or sulfide series). This result implies that the
molecular calculation can be utilized to design polymers with
low birefringence. The propagation losses of optical polymers
were 0.1 0.3 and 0.2 0.5 dB/cm at the wavelengths of 1.3
and 1.55 m, respectively. The optical losses are inversely pro-
portional to fluorine content. The polymers have good thermal
stability upon long-term thermal stress at 100 C for 1000 h
and short-term thermal stress at 300 C for 1 h.

Single-mode channel waveguides were designed by the ef-
fective-index method and beam-propagation method (BPM) and
fabricated using photolithography and the RIE process. Optical
losses of single-mode channel waveguides are slightly higher
than slab waveguides because of the fabrication imperfections
of the channel waveguides. The difference in the optical loss be-
tween the slab and channel waveguides was less than 0.2 dB/cm.
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