임신중 투여된 Azathioprine에 의한 신생 환자의 면역 반응 억제에 관한 연구

Study on the Inhibition of the Immune Response of the Neonatal Rat Spleen by the Azathioprine Administered during Pregnancy

서론

이에 저자는 Sprague-Dawley종의 임신 환자의 면역 반응 억제를 설정하여 Azathioprine의 투여 및 투여 방법(Teratogenic Effect)을 조사하기 위하여 임신중 투여한 Azathioprine이 신생 환자의 면역 반응을 억제하는 것을 알아 보았다. 임신 뒤 양용으로 자궁 내에서 양용 약물은 임신 초기에서 양용 약물의 양용과 투여 방법을 저자와 같은 결과를 얻기 위하여 임신 초기에 투여한 신생 환자의 면역 반응에 대해 투여하여 얻은 끝을 얻게 되었는 결과가 임신 초기에 양용 약물과 신생 환자의 면역 반응에 미해한 지하 되어 있음을 알게 되었다 (Eduardo, 1978).

저자는 이와 같은 결과에 의하여 Azathioprine는 임신중 신생 환자에 투여할 때 그 결과에서 양용 약물의 양용이 억제되고 그 결과로 양용에 되게 되는 면역 반응이 억제되었고 임신 중의 T 및 B 세포 양용과 양용은 신생 환자에게 양용 화학적 세포를 얻어 Plaque Assay법 및 조직 화학적 임상법을 이용하여 양용 반응의 변화를 관찰하였다.

1. 실험 동물

처음 200g 내외의 Sprague-Dawley종의 정상 환자의 코바여서 투여된 임신한 임신 60주(이 중 45주까지는 임신 확산후 제 7일에 Azathioprine을 8mg/kg/kg경구 투여하였는데, 임신동은 사망 후 정을, vaginal plug가 화 입된 때임 제 5일)을 하였고 나머지 15마리는 Azathioprine을 투여하지 않음에서 출산된 200마리의 신생 환자를 사용하였다. 실험군은 25마리의 6군으로 나누고 각 군에서 생후 4주, 8주, 12주로 나누어 각각 8 마리에씩 하였으며, 변형 양용군 혹은 Dextran을 복용하였고 임신 후 4주, 8주, 12주로 나누어 각각 8 마리에씩 하였으며 변형 양용군 혹은 Dextran을 복용하였다. 실험군은 25마리의 6군으로 나누고 각 군에서 생후 4주, 8주, 12주로 나누어 각각 8 마리에씩 하였으며 변형 양용군 혹은 Dextran을 복용하였다. 실험군은 25마리의 6군으로 나누고 각 군에서 생후 4주, 8주, 12주로 나누어 각각 8 마리에씩 하였으며 변형 양용군 혹은 Dextran을 복용하였다.

제 1군 : Azathioprine을 투여한 임신 환자에서 투여

제 2군 : Azathioprine을 투여한 임신 환자에서 투여

제 3군 : Azathioprine을 투여한 임신 환자에서 투여

제 4군 : Azathioprine을 투여한 임신 환자에서 투여

제 5군 : Azathioprine을 투여한 임신 환자에서 투여

제 6군 : Azathioprine을 투여한 임신 환자에서 투여

제 7군 : Azathioprine을 투여한 임신 환자에서 투여

제 8군 : Azathioprine을 투여한 임신 환자에서 투여

제 9군 : Azathioprine을 투여한 임신 환자에서 투여

제 10군 : Azathioprine을 투여한 임신 환자에서 투여

제 11군 : Azathioprine을 투여한 임신 환자에서 투여

제 12군 : Azathioprine을 투여한 임신 환자에서 투여

제 13군 : Azathioprine을 투여한 임신 환자에서 투여

제 14군 : Azathioprine을 투여한 임신 환자에서 투여

제 15군 : Azathioprine을 투여한 임신 환자에서 투여

제 16군 : Azathioprine을 투여한 임신 환자에서 투여

제 17군 : Azathioprine을 투여한 임신 환자에서 투여

제 18군 : Azathioprine을 투여한 임신 환자에서 투여

제 19군 : Azathioprine을 투여한 임신 환자에서 투여

제 20군 : Azathioprine을 투여한 임신 환자에서 투여

제 21군 : Azathioprine을 투여한 임신 환자에서 투여

제 22군 : Azathioprine을 투여한 임신 환자에서 투여

제 23군 : Azathioprine을 투여한 임신 환자에서 투여

제 24군 : Azathioprine을 투여한 임신 환자에서 투여

제 25군 : Azathioprine을 투여한 임신 환자에서 투여

2. 원리

A. 면역 체계: Azeller에 투여된 후 면역체계의 Hank's Balanced Salt Solution(HBSS)로 약합으로 3회 세척(4°C에서 1000rpm으로 10 분간

--- 353 ---

* 본 논문은 1980년도 서울대학교 동의학과 학술연구 제단 선수비의 지원을 받았음.
B. Dextran: 평균 분자량이 500,000이고 SIGMA회사 제품인 Dextran 15mg을 HBSS 50ml에 잘 녹여 Milli-Pore로 대두시킨 후 Complete Adjuvant과 동량 섞어서 복강내 1회 주사하였으며 4주째에는 50μg/마리, 8주간에는 100μg/마리, 12주간에는 150μg/마리 주입하였다.

3. 흉선 세포

이제 코베에서 얻은 같은 연령의 심장 흉관을 도달하여 무균적으로 흉안을 저수하여 면포처리된 HBSS로 흉선 화소 부분을 만들고 Ficoll-Hyphaque 용액으로 4°C에서 1700g을 90분간 섞어 흉선 주입한 후 3회 세척하여 세포 부유액을 얻어 Ficoll-Hyphaque 용액을 완전히 제거한 후 4주째에는 2.0×10^6/mL의 영파구들, 8주 및 12주째에는 4.0×10^9/mL의 염파구들이 Tailing (Tail vein)에 성장하였다.

4. 조직처리 과정

각 군의 동물들은 실험을 거치하여 그 일부는 60% Ethyl Alcohol에 Formalin을 6%로 하여 각 군별에 1~2시간 4°C에서 고정하여 동상 방법에 따라 파리관 포메를 하루 5~6주의 조직 절편을 만들어 Methyl Green-Pyronin 염색을 하여 결핵 밀도와 모종에서 비장의 동맥주위입소조에 존재하는 Large Pyroninophilic Cell들을 수술하였다.

5. Plaque assay 과정

A. Direct plaque assay: 저작된 비정은 pH 7.2인 HBSS(4°C)에 냉여 세포 부유액을 만든 다음, 1,000rpm 에서 10분간 원심 분리하여 집합을 흉선과 동상의 Buffy Coat 를 건너 빠져 기 2차 세포부유액을 만든 후 2~3회의 원심 분리로 동상 HBSS로 세척하고 이 세포 부유액은 경량 계수를 통해서 영파구의 수가 10^9/mm^3가 되도록 흉선하였다.

본 실험에 사용된 방법은 Jerne등(1963)의 Plaque assay법의 방법으로 사용한 Slide Method로서 HBSS에 0.5% 되게 용해시킨 Agarose 용액 0.5ml와 HBSS로 3회 세척한 후 Cell packed volume가 1:10가지 흉선하여 얻은 영파 주입액 0.5ml가 45°C 활한 수지를 갖춘 시험용을 비로 넣고 여기에 각 군의 비정 세포 부유액 0.1ml를 가하여 두용 케어 결과로 흉선에서 얻은 두용 Microscopic Slide에 넣고 Agar용액을 만들어 Guinea pig 혈청을 1:10의 HBSS로 완전한 보체와 함께 슬도 95% 이상의 37°C 항온기에서 3시간 동안 반응시켰다.

B. Indirect plaque assay: Dextran을 흉선으로 사용한 군들을 대상으로는 Indirect plaque assay법을 이용하였다. 즉 Dextran을 영양 저혈구 부착시키기 위해 Ghanati(1972)의 법을 이용하였다. Dextran을 늘리서가기 위해 100mg의 Dextran을 0.01M Acetate Buffer (pH 6.0) 10ml에 녹인 후에 Na^+ periodate의 최종농도가 10^{-2}M이 되도록 함께 넣고 건식 반응시켰다. 1시간 후 Borate Buffered Saline (0.2M, pH 8.0)으로 화합물 동안 부착하였다. 다음 날 무시후 2시간 후 20,000rpm으로 10분간 원심분리한 후 상승액(Supernatant)을 Milli-Pore (0.4μm)에 시험대사 세척하였다. 이렇게 신사된 Dextran을 영양 저혈구에 부착시키기 위해 영양 저혈구용 HBSS로 5회 세척하고 Borate Buffered saline으로 1회 더 세척한 후, Borate Buffered saline으로 Cell packed volume가 1:10의 영양 저혈구 부유액을 만들고 이 저혈구 부유액 2ml에 사화된 Dextran 100μg를 가한 후 37°C의 항온기에서 배어 주면서 1시간 이상 배양시켰다. 배양후 Dextran 이 부착된 영양 저혈구용액을 동상 생리 식염수로 3회 세척하여 부착되지 않은 응액에 존재하는 Dextran을 제거하고 HBSS로 10% 저혈구 부유액을 만들어 Direct plaque assay법에 마찰기지로 사용하였다.

성적

1. Plaque 형성 세포(PFC)

A. 영양 저혈구를 투여한 제1군, 2군 및 3군에서의 PFC: 생후 4주에는 제1군에서 영양 저혈구를 제일 높게 하여 100개의 PFC를 보았고 제2군에는 영양 저혈구를 제일 높게 하여 100개의 PFC를 나타내고 제3군에서는 영양 저혈구는 적은 수치의 PFC를 나타내었다. 제3군에서의 항

<p>| Table 1. Number of PFC per 10^6 spleen cells of the Ag-injected rat at the age of 4 weeks |</p>
<table>
<thead>
<tr>
<th>Day(s)</th>
<th>Ag*</th>
<th>SRBC**</th>
<th>Group</th>
<th>G-1</th>
<th>G-2</th>
<th>G-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>65.8±7.4</td>
<td>13.5±1.7</td>
<td>68.2±5.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20.8±2.4</td>
<td>6.6±0.7</td>
<td>23.8±3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Ag: Antigen
**SRBC: Sheep RBC
원 투여 후 제 3일과 제 7일에 각가 68.2개, 23.8개의 PFC를 보였으나(표 1).

생후 8주에는 제 1군에서 항원 투여 후 제 3일과 제 7일에 각각 99.0개, 27.9개의 PFC를 보였고, 제 2군에서는 항원 투여 후 제 3일과 제 7일에 각각 30.4개, 14.7개의 PFC를 나타내어 제 1군에 대한 제 2군의 PFC수의 비율이 약 3:1의 비율을 보이며 생후 4주에 비해 감소하였다. 제 3군에서는 항원 투여 후 제 3일과 제 7일에 각각 234.0개, 40.2개로 다른 군에 비해 훨씬 많은 수의 PFC를 보였다(표 2).

Table 2. Number of PFC per 10^6 spleen cells of the Ag-injected rat at the age of 8 weeks.

<table>
<thead>
<tr>
<th>Day(s) After Ag injection</th>
<th>Group</th>
<th>G-1</th>
<th>G-2</th>
<th>G-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>99.0±8.7</td>
<td>30.4±2.5</td>
<td>234.0±19.2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>27.9±3.7</td>
<td>14.7±1.6</td>
<td>40.2±3.6</td>
</tr>
</tbody>
</table>

생후 12주에는 제 1군에서 항원 투여 후 제 3일과 제 7일에 각각 93.2개, 48.3개의 PFC를 보였고 제 2군에서는 항원 투여 후 제 3일과 제 7일에 각각 59.8개, 29.4개의 PFC를 보아 제 1군에 대한 제 2군의 PFC수의 비율이 약 1.5:1으로 생후 4주군에 비해 비율이 상당히 감소하였다. 제 3군에서는 항원 투여 후 제 3일과 제 7일에 각각 196.3개, 69.5개의 PFC를 보였다(표 3).

Table 3. Number of PFC per 10^6 spleen cells of the Ag-injected rat at the age of 12 weeks.

<table>
<thead>
<tr>
<th>Day(s) After Ag injection</th>
<th>Group</th>
<th>G-1</th>
<th>G-2</th>
<th>G-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>93.2±7.4</td>
<td>59.8±4.8</td>
<td>196.3±20.1</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>48.3±5.1</td>
<td>29.4±3.1</td>
<td>69.5±7.2</td>
</tr>
</tbody>
</table>

이성의 성장은 종합하면 생후 4주에서 12주까지 전반적으로 Azathioprine을 투여한 제 2군이 투여하지 아니한 제 1군에 비해 적은 수의 Plaque를 형성하였고 Azathioprine을 투여한 군이라 하고 하더라도 항원투여와 함께 지역에서 얻은 신생 원기의 응신 세포를 투여한 제 3군에서는 응신 세포를 투여하지 않은 제 2군에 비해 현저하게 많은 수의 Plaque를 형성하였다(그림 1).

생활 제 1군, 2군 및 3군에 있어서 투여된 승강 증가에 따른 PFC수의 변화를 보임, 먼저 항원 투여 후 제 3일에는 제 1군과 2군은 생후 8주까지는 유의한 경도로 증가하다가 생후 8주 이후에는 증가가 거의 보이지 않았다. 제 2군에서는 생후 12주까지 연령의 증가에 따라 유의한 차이를 보이며 서서히 증가하였다(그림 1)

항원 투여 후 제 7일에는 제 1군, 2군 및 3군이 전반적으로 생후 12주까지 연령의 증가에 따라 서서히 증가하였다(그림 2).

B. Dextran을 투여한 제 4군, 5군 및 6군에서의 PFC: 생후 4주에는 제 4군에 있어서 항원투여 후 제 3 및 제 7일에 각각 3.4개, 19.8개의 PFC를 보였으며 제 5군에서는 항원 투여 후 제 3일과 제 7일에 각각 1.2개, 24.9개의 PFC를 형성하여 제 4군에 대한 제 5군의 PFC의 비율이 약 0.8:1을 보였다. 제 6군에서는 항원 투여 후 제 3일과 제 7일에 각각 1.8개, 31.8개의 PFC를 보아 전반적으로 항원 투여 후 제 7일에 많은 수의 PFC를 나타내었다(표 4).

생후 8주에는, 제 4군에서 항원 투여 후 제 3일과 제 7일에 각각 6.6개, 29.8개의 PFC를 보았으며 제 5군에서는 항원 투여 후 제 3일과 제 7일에 각각 5.4개
Table 4. Number of PFC per 10^6 spleen cells of the Ag-injected rat at the age of 4 weeks.

<table>
<thead>
<tr>
<th>Day(s) After Ag injection</th>
<th>Ag</th>
<th>DEXTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G-4</td>
<td>G-5</td>
</tr>
<tr>
<td>3</td>
<td>3.4±0.1</td>
<td>1.2±0.0</td>
</tr>
<tr>
<td>7</td>
<td>19.8±2.1</td>
<td>24.9±3.4</td>
</tr>
</tbody>
</table>

31.2의 PFC을 보여 제4군에 대한 제5군의 PFC 비율은 약 1:1을 보여 생후 4주군과 유의한 차이을 보이지 않았다. 제6군에서는 혈청 두어후 제3일과 제7일에 각각 3.6배, 32.4배의 PFC를 나타내었고 생후 4주군들에 비해 집단적으로 증가하였지만 각 군간의 차이는 보이지 않았다(표 5).

Table 5. Number of PFC per 10^6 spleen cells of the Ag-injected rat at the age of 8 weeks.

<table>
<thead>
<tr>
<th>Day(s) After Ag injection</th>
<th>Ag</th>
<th>DEXTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G-4</td>
<td>G-5</td>
</tr>
<tr>
<td>3</td>
<td>6.6±0.5</td>
<td>5.4±0.3</td>
</tr>
<tr>
<td>7</td>
<td>29.8±2.7</td>
<td>31.2±4.7</td>
</tr>
</tbody>
</table>

생후 12주에는 제4군에서 혈청 두어후 제3일과 제7일에 각각 4.0배, 31.4배의 PFC를 보였으며, 제5군에서는 혈청 두어후 제3일과 제7일에 각각 6.6배, 33.3배의 PFC를 보여 제4군에 대한 제5군의 PFC수의 비율이 약 0.9:1을 보여 집단 증가에 따른 변화는 없었다. 제6군에서는 혈청 두어후 제3일과 제7일에 각각 6.5배, 35.7배의 PFC를 보였다(표 6).

Table 6. Number of PFC per 10^6 spleen cells of the Ag-injected rat at the age of 12 weeks.

<table>
<thead>
<tr>
<th>Day(s) After Ag injection</th>
<th>Ag</th>
<th>DEXTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G-4</td>
<td>G-5</td>
</tr>
<tr>
<td>3</td>
<td>4.0±0.2</td>
<td>6.6±0.3</td>
</tr>
<tr>
<td>7</td>
<td>31.4±2.9</td>
<td>33.3±4.7</td>
</tr>
</tbody>
</table>

이상의 결과를 종합하면 생후 4주에서 12주까지 혈청 두어후 제3일 및 제7일 모두에 있어서 각 군간에 PFC수의 유의한 차이를 보이지 않았다(그림 3 및 4).

2. 비장의 조직학적 변화
A. 현앙 적혈구를 투여한 제1군, 2군 및 3군에서의

Fig. 3. Changes of the number of PFC with increasing age on the 3rd day after antigen injection.

Fig. 4. Changes of the number of PFC with increasing age on the 7th day after antigen injection.

변화: 생후 4주에는 제1군에서 혈청 두어후 제3일과 제7일에 각각 High Power Field(이하 HPF로 약함)에서 30.3배, 22.0배의 Large Pyroninophilic Cells(이하 LPC로 약함)이 관찰되었으며 제2군에서는 혈청 두어후 제3일과 제7일에 각각 HPF에서 7.7배, 7.1배의 LPC가 관찰되어 제1군에 비할 제2군의 LPC수의 비율은 약 4:1을 보였다. 제3군에서는 혈청 두어후 제3일과 제7일에 각각 HPF에서 39.3배, 25.0배의 LPC가 관찰되었다(표 7).

Table 7. Number of large pyroninophilic cells per HPF* of the Ag-injected rat spleen at the age of 4 weeks.

<table>
<thead>
<tr>
<th>Day(s) After Ag injection</th>
<th>Ag</th>
<th>SRBC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G-1</td>
<td>G-2</td>
</tr>
<tr>
<td>3</td>
<td>30.3±6.7</td>
<td>7.7±0.6</td>
</tr>
<tr>
<td>7</td>
<td>22.0±4.0</td>
<td>7.1±0.5</td>
</tr>
</tbody>
</table>

*HPF: High Power Field
생후 8주에는 제 1군에서 항원 두어후 제 3일과 제 7일에 각각 HPF에서 42.0개, 19.7개의 LPC가 관찰되었고 제 2군에서는 항원 두어후 제 3일과 제 7일에 각각 HPF에서 22.7개, 13.0개의 LPC가 관찰되어 제 1군에 대한 제 2군의 LPC수의 비율은 약 2 : 1의 비율을 보여 생후 4주군에 비해 유의하게 감소하였다. 제 3군에서는 항원 두어후 제 3일과 제 7일에 각각 HPF에서 42.3개, 23.0개의 LPC가 관찰되어 생후 4주군에 비해 다소 증가하였다(표 8).

Table 8. Number of large pyroninophilic cells per HPF of the Ag-injected rat spleen at the age of 8 weeks

<table>
<thead>
<tr>
<th>Day(s) After Ag injection</th>
<th>Ag</th>
<th>SRBC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G-1</td>
<td>G-2</td>
</tr>
<tr>
<td>3</td>
<td>42.0±3.0</td>
<td>22.7±3.2</td>
</tr>
<tr>
<td>7</td>
<td>19.7±2.9</td>
<td>13.0±1.0</td>
</tr>
</tbody>
</table>

생후 12주에는 제 1군에서 항원 두어후 제 3일과 제 7일에 각각 HPF에서 36.7개, 28.7개의 LPC가 관찰되었으나 제 2군에서는 항원 두어후 제 3일과 제 7일에 각각 HPF에서 23.7개, 15.0개의 LPC가 관찰되어 제 1군에 대한 제 2군의 LPC수의 비율은 약 2.5 : 1을 보였으나 제 3군에서는 항원 두어후 제 3일과 제 7일에 각각 HPF에서 74.0개, 48.3개의 LPC가 관찰되어 다 군에 비해 유의하게 증가하였다(표 9).

Table 9. Number of large pyroninophilic cells per HPF of the Ag-injected rat spleen at the age of 12 weeks

<table>
<thead>
<tr>
<th>Day(s) After Ag injection</th>
<th>Ag</th>
<th>SRBC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G-1</td>
<td>G-2</td>
</tr>
<tr>
<td>3</td>
<td>36.7±4.5</td>
<td>23.7±1.5</td>
</tr>
<tr>
<td>7</td>
<td>28.7±2.1</td>
<td>15.0±1.0</td>
</tr>
</tbody>
</table>

한편 생후 4주, 8주 및 12주의 모든 군들에서 백수가 적을수록 저수의 밀도가 도달하였으나 전체적으로 Azathioprine을 두어한 군에서 유의한 차이를 보이지 않았으며 제 2군은 안쪽 30%의 LPC수의 비율을 보였으며 제 3군은 생후 8주까지는 큰 변화 없으나 12주 중 크게 증가하였다(그림 5).

Fig. 5. Changes of the number of large pyroninophilic cells on PALS per HPF with increasing age on the 3rd day after antigen injection.

*LPC: Large pyroninophilic cells.

Fig. 6. Changes of the number of the large pyroninophilic cells on PALS per HPF with increasing age on the 7th day after antigen injection.

항원 두어후 제 3일에는 제 1군과 제 3군은 생후 8주가 지근 변화를 보였으나 생후 12주에 유의한 증가를 보임에 반해 제 2군은 안쪽 증가에 따라 서서히 증가하였다(그림 6).

**B. Dextran을 투여한 제 4군, 5군 및 6군에서의 변화: 생후 4주에는 제 4군에서 항원 두어후 제 3일과 제 7일에 각각 HPF에서 12.3개, 31.7개의 LPC가 관찰되었으며 제 5군에서는 항원 두어후 제 3일과 제 7일에 각각 HPF에서 13.5개, 33.6개의 LPC가 관찰되어 제 4군에 대한 제 5군의 LPC수의 비율은 약 0.9 : 1을 보였다. 제 6군에서는 항원 두어후 제 3일과 제 7일에 각각 HPF에서 21.3개, 33.3개의 LPC가 관찰되었다(표 10).

생후 8주에는 제 4군에서 항원 두어후 제 3일과 제 7일에 각각 HPF에서 13.3개, 32.3개의 LPC가 관찰

--- 357 ---
<table>
<thead>
<tr>
<th>Day(s) After Ag Injection</th>
<th>Group</th>
<th>DEXTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-4</td>
<td>12.3±0.6</td>
<td>13.3±1.2</td>
</tr>
<tr>
<td>G-5</td>
<td>31.7±2.5</td>
<td>33.6±2.1</td>
</tr>
<tr>
<td>G-6</td>
<td>31.7±2.3</td>
<td>26.3±2.3</td>
</tr>
</tbody>
</table>

Table 11. Number of large pyroninophilic cells per HPF of the Ag-injected rat spleen at the age of 8 weeks.

<table>
<thead>
<tr>
<th>Day(s) After Ag Injection</th>
<th>Group</th>
<th>DEXTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-4</td>
<td>13.3±2.3</td>
<td>17.0±2.6</td>
</tr>
<tr>
<td>G-5</td>
<td>32.3±3.1</td>
<td>32.7±4.0</td>
</tr>
<tr>
<td>G-6</td>
<td>31.7±2.3</td>
<td>26.3±2.3</td>
</tr>
</tbody>
</table>

Table 12. Number of large pyroninophilic cells per HPF of the Ag-injected rat spleen at the age of 12 weeks.

<table>
<thead>
<tr>
<th>Day(s) After Ag Injection</th>
<th>Group</th>
<th>DEXTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-4</td>
<td>28.3±7.2</td>
<td>26.0±1.7</td>
</tr>
<tr>
<td>G-5</td>
<td>50.0±3.6</td>
<td>53.0±4.6</td>
</tr>
</tbody>
</table>

Fig. 7. Changes of the number of the large pyroninophilic cells on PALS per HPF with increasing age on the 3rd day after antigen injection.

Fig. 8. Changes of the number of the large pyroninophilic cells on PALS per HPF with increasing age on the 7th day after antigen injection.

고찰

Azathioprine이 면역 반응에 미치는 영향에 대해서는 여러 학자들이 연구하였으나 아직 연구자들 간에 의견의 일치를 보지 못하고 있는 실정이다.

한편 Bach(1969), Bach와 Fournier(1973)은 Azathioprine이 T세포만을 선택적으로 억제하는 작용
온갖 곳에 있고 있었으며 Brown 등(1976)은 B세포유
사분인 물질의 작용을 억제하였다고 보고하면서 세포가 B세포보다 Azathioprine에 더 감수성이 강하다는
의견을 밝혀하였다. 또한 Rollainghoff 등(1973)과 Gala-
nau등(1975)은 T-cell dependent Antigen에 의한 면역 반응이 T-cell dependent Antigen에 의한 면역 반응보다 Azathioprine에 의해서 더욱 쉽게 억제된다
하고 논의하였다.
의 연구자들의 결과를 나누어 보면 Azathioprine에
의한 면역 억제 기전이 아직 명확히 규명되어 있지 않
은 상태이고 또 지금까지의 저자들의 연구 결과 즉,
임신중 Azathioprine를 투여한 태어난 신생
원예에서 흙을 비롯한 염파관련들의 발육이 지연되고
면역 체계체제의 면역 반응이 저해된다는 결
과가 이번 기대에 의해 이루어지는가를 규명한다는 것
은 Azathioprine의 면역 억제 기전을 밝히는데 큰 의
미가 있다고 생각한다.
본 실험에서 T-cell dependent Antigen의 면역 체계조
구를 두어한 군(1, 2 및 3군)에서의 면역 반응을 보면
우선 혈관 투여후 제 7일 뿐만 아니라 제 3일에 보다 강한
반응을 보여 이 결과는 이등(1978)의 보고와 일치하
었다.
면역 반응을 강하게 일어나는 태어난 투여후 제 3일에
서의 면역 반응을 보면 임신중 Azathioprine의 투여로
흡수 발육이 억제된 제 2군이 정상적으로 발육한 흙
을 갖고 있는 제 1군과 비해 현저하게 저하된 면역 반
응을 보였으며 흙수발육이 억제된 신생 원예에 이로
교사에서 얻은 신생 원예의 흙을 재배른 투여한 제 3
군에서는 제 1군 및 제 2군의 어느 것보다도 많은
PFC의 수가 나타나 있었다. 이와 같은 결과는 임신중
투여한 Azathioprine가 원예 투여자의 흙수 발육을 억제
시킨 결과로 보아 염파관련에 T세포의 반응장에
가 소요되었기 때문에 T-cell dependent Antigen의 면
역 체계체제에 대한 면역 반응이 일어나지 않았음을 제
시하는 결과이다. 그리고 제 1군, 2군 및 3군에서 관
찰된 억제의 효과는 모두 PFC의 숫자 변화와 동일한
양상을 나타내는데, 상기 기한의 면역을 막방해주는
소견으로 생각된다.
한편 신생 원예의 인연이 증가함에 따라 제 1군에
대한 제 2군에서의 PFC수의 비율이 점차 낮아지고 있
음을 관찰하였는데 즉, 생후 4주에 그 비율이 5:1이
있던 것이 생후 12주에는 1:5:1로 정상 대조군인 제
1군과 Azathioprine투여군 제 2군에서의 PFC 수
가 거의 비슷하게 있음을 보였는데 이는 임신중 염
파관련 투여된 Azathioprine에 의해 발육이 억제
되었던 흙을 인연이 증가함에 따라 차차 회복됨으로
써 면역반미관련인 빅토리 흙의 영향을 받아 면역 반
응 능력이 회복되어 있음을 의미하며 이와 같은 소견은
조직 표본상에서 관찰한 결과와도 잘 일치하고 있었다.
T-cell independent Antigen인 Dextran을 투여한 군
에서의 PFC 수를 보면 면역 체계구를 두어한 제 1,
2 및 3군에서는 맞이 혈관 투여후 제 3일 보다는 제
7일에 감소된 면역 반응을 보이고 있다. 이것은 질병성
환자의 차이에서의 결과로 사료되며 이런 결과는 1976년
Chen 등이 태어난 신생 투여후 제 7일에서 10일 사이에 면역 반응의 감소를 보이고 제 3일에는 아주 약한 면역 반
응을 나타내었다고 보고한 바와 같은 사례이다.
면역 반응이 강하게 일어나는 혈관 투여후 제 7일에서
보면 임신중 Azathioprine의 투여로 인하여 흙수의 발
육이 억제된 제 5군과 제 6군, 그리고 흙수의 정상적
으로 발육한 제 4군에서 염파관련의 증가에 따른 각 군간의
유의한 차이를 보이지 않고 있다. 이와 같은 결과는 임신중
Azathioprine 투여로 흙수의 발육이 억제된 신생
원예체제에서의 적도 B세포체제는 억제된 것을 의미하
고 있음을 놓고 있고 더 나아가서 T-cell dependent Antigen의 면역 체계체제를 두어한 제 1군, 2군 및 3
군의 성장이 비교해 본 때 B세포체제에 의한 면역 장애
가 있음을 강력히 제시하는 결과로 하겠다. 그리고 이
와 같은 결과는 조직학적 변화 소견도 기존과 일치하고
있다.
이상의 결과를 종합해 본 때 Azathioprine은 B세포
가 아닌 T세포를 선택적으로 억제하며(Background
1973) 그 결과 말초의 T-helper Cell을 감소(Depletion)
되고 이로써 바이러스의 B세포와의 협동작용(Collaboration)이 이루어지지 않아서 면역 반응이 억제된
나는 사실을 제시하고 있다.

결
론

임신중 투여한 Azathioprine이 그 투여에서 태어난
신생 원예 염파관련의 발육을 저해시키는 기능을 규명
하기 위하여 다음과 같은 실험을 수행하였다.
실험 동물로는 Sprague-Dawley계통의 200g 내외의
임신한 원예 60마리(이중 45마리를 임신 제 7일에
Azathioprine을 8mg/kg경구 투여함)에서 정상 분만으
로 태어난 신생 원예 20마리를 6군으로 나누어 그 중
3군에는 혈관으로 억제 체계체제, 나머지 3군에는 혈
관으로 Dextran을 투여하고, 이에 교사에서 얻은 신생

— 359 —
the inhibition mechanism of the immune response in the neonatal rat spleen by azathioprine administered during pregnancy.

The experimental animals were the two hundred neonatal rats which were born by sixty normal Squire-Dawley pregnant rats, of which 45 rats 8mg/kg of azathioprine were administered to orally at the 7th gestational day.

Above two hundred experimental animals were divided into 6 groups as follows:

Group 1: Neonatal rats to which T-dependent antigen, Sheep Red Blood Cells (SRBC) were injected intraperitoneally, born by normal pregnant rats.

Group 2: Neonatal rats to which SRBC were injected intraperitoneally, born by pregnant rats to which azathioprine had already been given orally during pregnancy.

Group 3: Neonatal rats to which SRBC were injected intraperitoneally and thymus cells derived from outbred neonatal rats were injected intravenously, born by pregnant rats to which azathioprine had already been given orally during pregnancy.

Group 4: Neonatal rats to which T-independent antigen, Dextrans was injected intraperitoneally, born by normal pregnant rats.

Group 5: Neonatal rats to which Dextrans was injected intraperitoneally, born by pregnant rats to which azathioprine had already been given orally during pregnancy.

Group 6: Neonatal rats to which Dextrans was injected intraperitoneally and thymus cells derived from outbred neonatal rats were injected intravenously, born by pregnant rats to which azathioprine had already been given orally during pregnancy.

Antigen was injected intraperitoneally to above each group on the 4th, 8th and 12th weeks after birth and then, the spleen was resected on the 3rd and 7th days after injection of antigen for the plaque assay and histochemical studies.

The following results were obtained:

1. Many plaque-forming cells (PFC) were observed
on the 3rd day after injection of antigen in all groups to which SRBC were injected, while many PFC were observed on the 7th day after injection of antigen in all groups to which Dextran was injected.

2. More PFC were observed in Group 1 than Group 2, and much more PFC were observed in Group 3.

3. There were no significant differences in number of PFC between Dextran-Groups (Group 4, Group 5 and Group 6).

4. There was strong tendency to recover the immunological function with increasing age in SRBC-Groups (Group 1, Group 2 and Group 3).

5. Above results were in good accordance with those of histochemical observations.

6. It is strongly suggested that administration of azathioprine during pregnancy did suppress the development of fetal thymus, and that as a result of that suppression peripheral T-helper cells were depleted and consequently the formation of antibody was inhibited due to the insufficient collaboration between T cells and B cells.

REFERENCES

Otterness, I.G. & Y.H. Chang: Comparative study of cyclophosphamide, 6-mercaptopurine, azathioprine

