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ABSTRACT

Implementation of recursive equations using parallel
computer architecture has long been of interest because the
dependency problem makes it difficult to achieve significant
speed-up.  In this paper, efficient implementation of
recursive filtering equations on partitioned data-path SIMD
(Single Instruction Multiple Data) processors is studied.
Especially, three parallel computation techniques, which are
the block filtering, recursive doubling, and multi-block
filtering methods, are implemented and their performances
are compared using a Pentium CPU based system. The
performance evaluation result of the multi-block processing
method on a scalable SIMD processor is also presented.

Index Terms— parallel computation, recursive filtering,
partitioned data-path, SIMD processor

1. INTRODUCTION

Recursive equations are used for many applications, such as
recursive and adaptive filtering in digital signal processing.
Parallel computation of recursive equations is known to be
very difficult or inefficient because of the dependency
problem.  One example is computing multiple output
samples of y[n] = a*y[n-1] + x[n] at a time. The dependency
problem arises because computing y[nt+1] needs the
previous output sample, y[n]; this means that y[n+1] and
y[n] cannot be computed simultaneously when using this
equation.  Although the history of research on parallel
computation of recursive equations is quite long, the interest
on this topic seems not diminished even in these days
[1][2][3]. This is partly because parallel computation
algorithms cannot be equally applied to all the parallel
computer architectures, such as pipelined, VLIW,
superscalar, multi-core, and multi-processor systems.
Efficient parallel computation of recursive equations will be
more important in the future as the degree of parallelism for
the architecture of a CPU increases. In recent years, the
partitioned data-path SIMD architecture is widely used
because this one is very hardware efficient. The partitioned
data-path architecture can be built easily by increasing the
width of the data-path, however the flexibility is considered

low because the data-path needs well aligned input operands
as illustrated in Fig. 1. The number of data that is processed
at a time is called the number of SIMD-ways, and is denoted
as P.

In this research, we have implemented sequential and
parallel computing algorithms for recursive filtering
equations on SIMD processors with partitioned data-path,
and compared the efficiency of them. Not only the effects
of the number of SIMD-ways, but also those of the memory
access patterns are examined because many previous SIMD
implementations suffer from the increased data-alignment
overheads. The implementation examples with constant
coefficient recursive equations are given; however, this
approach can be extended to time-varying coefficients
recursive equations that are used for adaptive filtering.
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Fig. 1. Partitioned ALU structure

In Section 2, the partitioned data-path SIMD architecture is
described. Section 3 shows the implementation of
sequential recursive filtering equations on SIMD processor
architecture. The implementation procedures employing
three parallel algorithms are explained in Section 4. The
experimental results are presented in Section 5. Concluding
remarks are given in Section 6.



2. ARCHITECTURE OF PARTITIONED DATA-PATH
SIMD PROCESSORS

The partitioned data-path SIMD processor architecture has
the advantage of small hardware overhead for increasing the
parallelism.  The size of program memory and the
instruction bandwidth are also much reduced when
compared with other parallel architectures, such as VLIW,
superscalar, or multi-core systems. The partitioned data-
path based SIMD architecture is especially useful for
multimedia applications, such as image or video processing,
because they usually require short word-length, such as 8bit
or 16bit, data. Nowadays, the partitioned data-path can be
found in various architectures such as CPU’s for personal
computers and workstations, programmable digital signal
processors, and embedded CPU’s. Recently developed
CPU’s employing the VLIW or multi-core architecture
mostly support SIMD arithmetic instructions.

However, the SIMD architecture has its own limitations.
In order to perform a SIMD operation, the data must be
aligned at first, which may require pack, unpack, or shuffle
operations and can be a problem to the efficiency
enhancement of the SIMD architecture.

Most computer systems employ a single bank memory or
cache system due to its simplicity. Single bank memory
systems can only efficiently handle aligned data access. For
example, a single-bank memory system with the memory
access width of 8 can access D[0]~D[7] at a time, but it
needs additional cycles even for a simple unaligned data
access, such as reading D[1]~D[8]. Unaligned data access
not only takes extra memory cycles but also incurs data
arrangement overhead in the CPU.

To reduce the data arrangement overhead, some SIMD
processors equip vector memory systems that can efficiently
support unaligned and stride data access [4]. Vector
memory systems are usually built using multi-bank or multi-
port memory based systems. In the multi-bank memory
based system, shown in Fig. 2, the data is stored in an
interleaving scheme. The bank number of the data is
determined by ‘(address) mod (P),” and the address within a
bank is calculated by ‘(int)(address/P).’  Because the
number of SIMD-ways, P, is usually a power of 2, the
division by P can be replaced with shift operations. This
structure does not have the unaligned access problem, but
this can suffer from the bank conflict problem when some of
the needed data are at the same bank. There are some other
structures that can prevent bank conflicts, such as the prime
bank memory system. Of course, the best performance can
be obtained with the multi-port memory based system. The
multi-port memory enables simultaneous access of P data
items, and as a result there is no bank-conflict or unaligned
access problem. However, a multi-port memory system
usually occupies more chip area than a multi-bank structure,
and its scalability is considered low.

As explained above, the partitioned data-path SIMD
processor architecture can be more clearly classified by the

memory architecture it employs. When a system only
equips a single bank memory system, it is very needed to
reduce the number of unaligned and stride accesses as much
as possible.
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Fig. 2. Multi-bank memory system

3. SIMD PROCESSOR IMPLEMENTATION OF A
SEQUENTIAL RECURSIVE EQUATION

The M-th order recursive equation considered in this work
has the following form.

=Y ayln—il+xin] (1)

The equation needs M multiply-add operations for each
output. One straightforward approach is computing one
output sample at a time using SIMD instructions conducting
inner product operations. When M is not larger than P, the
needed SIMD arithmetic operations for each output data can
be reduced to one assuming that the SIMD instruction set
supports inner product operations. If inner product
operations are not supported, implementing a vector
reduction can take several cycles.

Another idea is to compute multiple output samples at a
time, which is, so called, the outer product method in matrix
multiplication algorithms. It seems that the feed-back term
cannot be computed using the outer product method due to
the dependency problem. However, the outer product
method can be applied by rearranging the computation in a
skewed way. Eq. (2) depicts the outer product computation
flow for the M-th order recursive filtering equation. M
multiply-add and one load operations are conducted
concurrently.
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When M is smaller than P, the above operations can be
conducted using one SIMD instruction.  The vector
reduction operation is not needed. However, this method
cannot be efficient in terms of the expected speedup when
the order of the equation, M, is much smaller than P.

4. VECTORIZATION OF PARALLEL
TRANSFORMED RECURSIVE EQUATIONS

When the order of a recursive equation, M, is not much
smaller than the number of SIMD-ways, P, it would be best
to employ the sequential computation methods explained
above. However, if the number of SIMD-ways is larger
than the order of the recursive equation, it needs a clever
vectorization strategy. Vectorization includes binding of
arithmetic operations and proper ordering of data. In this
work, we compare the vectorization approaches which are
based on three different parallel computation methods. Note
that some algorithms demand much overhead for data
alignment, hence comparing only the number of arithmetic
steps is not sufficient. Since parallel computation of the first
order recursive filtering equation is the most difficult
problem, we will explain three algorithms with a first order
recursive equation.

4.1. Block filtering method

The basic idea behind the block filtering method is to
compute a block of output samples at a time using blocks of
input data and previously computed blocks of output data
[5]. The idea of block filtering method for a first order
constant coefficient recursive equation is illustrated in Eq.
(3), where the size of a block is assumed as 4. The initial
condition for this block is y[-1], and the block input data is
[x[0], x[1], x[2], x[3]], and the output samples are [y[0], y[1],
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The above equation can be computed as follows:
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Note that the computation steps shown in Eq. (4) use very
regular data structures if we keep separate copies of the
coefficients vectors.  There are not many overhead
operations for data rearrangement even with a conventional
single bank memory system. However, there seems no
speed-up achieved in terms of the number of arithmetic
steps. It takes five arithmetic (multiple-add) cycles for
computing four outputs, which corresponds to 5/4 cycles per
output sample.  Even if the number of SIMD-ways, P,
increases further, there is no gain in speed-up when
considering the number of arithmetic steps.

4.2. Recursive doubling method

Kogge and Stone applied the recursive doubling technique
to the computation of recursive equations [6]. The recursive
doubling method splits the computation of a function into
two equally complex sub-functions whose evaluation can be
performed in parallel, and the sub-functions are split again
and again to increase the degree of parallelism. Assume that
a first order constant coefficient recursive equation for n =
0, ..., 6 is to be computed using input samples, x[0], ...,
x[6], with the initial condition y[-1]. The computation step
is illustrated in Fig. 3.
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Fig. 3. Recursive doubling method for 1* order equation

The computation steps of Fig. 3 can be conducted as
follows:

step0: [U0, U1, U2, U31=[a*y[-1]+x[0], a*x[1]+x[2],
a*x|3]+x[4], a*x[5]+x[6]]
[a*U0+x[1], a-’*U0+ Ul, D)
a*U2+x[3], a *U2+U3]
step2: [y[3].y[41.0[5], y[6]]—[a Vi+x[3), a**VI+U2,
aHVI+V2, a*VI+V3).

stepl: [V0,V1,V2,V3] =

Note that y[0]=U0, y[1]=V0, y[2]=VI. This method
demands 3 SIMD arithmetic operations for computing 7



output samples.  This translates only 3/7 arithmetic
operations per output sample with P of 4. Thus, this
method seems much more efficient than the block filtering
method.

However, we can find that the operands for arithmetic
operations are not well aligned. The input operands for the
step 0 are [y[-1], x[1], x[3], x[5]] and [x[0], x[2], x[4], x[6]].
The second and the third steps show more complex memory
access patterns as illustrated in Fig. 3. However, the stride
for memory access is smaller than P. Thus, the multi-bank
vector memory unit with P banks can support these memory
accesses without a bank conflict.

4.3. Multi-block filtering method

This method processes multiple blocks simultaneously so
that it utilizes not only intra-block but also inter-block
parallelism.  Usually, the number of blocks which is
processed at the same time is equal to the degree of
parallelism, P. Thus, the number of data that is processed at
a time is equal to P>. Originally, Gajski developed a parallel
computation algorithm for recurrence equations with a two
dimensional layout of data based on a suffix problem for a
semi-group which is used for high speed binary adders [7].
Sung and Mitra derived the parallel computation method in
a different way, which separately computes the transient and
particular solutions, and further improved the complexity of
computation for constant coefficient recursive equations
[81[9]. Note that the particular solution is the term that can
be computed without the initial condition, while the
transient solution is the term only affected by the initial
condition, y[-1].

This method processes P blocks at a time, which can be
placed as shown in Fig. 4. The first block contains the data
of [x[0], x[1], x[2], ..., x[P-1]], and the second block holds
the data of [x[P], x[P+1], ...., x[2P-1]].
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Fig. 4. Data layout for multi-block filtering

Note that the initial conditions for these blocks are not
known except for the first block. Thus, this method assumes
the initial conditions of zero for all the blocks, except for the
first block, and computes the particular solutions for each
block in parallel. Although the initial conditions for the
blocks are not known, except for the first block, each block
of computation can be conducted in parallel because the

particular solution does not need the initial conditions. In
SIMD processors, each sub-unit of the partitioned data-path
takes care of each block of computation. Thus, with a P-
way SIMD processor, P blocks can be processed
concurrently. The computation procedure with a P-way
SIMD processor is as follows:

Initialize: z[-1] = y[-1], Z[P-1]=0, ..., z[P*-P-1]1=0
Ist step:  z[0]=a*z[-1]+x[0], z[P]=a*z[P-1]+x[P], ...
2 step:  z[1]=a*z[0]+x[1], z[P+1]=a*z[P]+x[P+1], ...  (6)

P step: z[P-1]=a*z[ P-2]+x[P-1], z[2P-1]=a*z[2P-2]+x[2P-1], ...

Note that the above computation utilizes inter-block
parallelism, which means that z[n], z[ntP], ..., zZ[#H(P-1)P]
are computed simultaneously.  After completing this
computation, the output data in the first block are the
complete solutions and y[P-1] is now available, but the
results for other blocks are only the particular solutions.
Then, the homogeneous solutions for the second block can
be computed as follows:

[Pl zZ[P] ] a
y[P +1] z[P +1] a’
= + yp=-1 ()
Ly[2P -11] |z[2P-11] |a"]

The above computation can be conducted at one step with a
P-way SIMD processor, and y[2P-1] is obtained. Then, the
homogeneous solutions for the third block are computed at
the next cycle using y[2P-1], and yields y[3P-1]. Thus,
computing the homogeneous solutions for all the blocks can
be finished in just P-1 steps. This stage of computation uses
the intra-block parallelism, which means that all the
homogeneous solutions for each block are evaluated at a
time. As a result, the number of arithmetic steps for one
sample can be modeled as (2P-1)/P* for this method. Thus,
the speed-up with this method is approximately P/2, and is
much better than the previously explained methods when P
is large.

This method is very efficient in terms of the number of
arithmetic operations, and can achieve a linear speed-up
with the number of processors, P. For computing 16
samples with a 4x4 data layout, it consumes only 7/16
arithmetic steps per sample. Although the number of
arithmetic steps seems comparable with that of the recursive
doubling, the multi-block processing method is much more
efficient as P increases. However, the first stage of
computation needs to pack the input data which are P
samples away. For example, input data x[0], x[7], x[2P], ...
x[(P-1)P] are used together as illustrated in Eq. (6). In other
words, the memory access pattern has the stride of P. Even
with a P-way vector memory shown in Fig. 2, this pattern of



data access incurs the bank-conflict problem. However, the
multi-port memory based vector memory or the prime-bank
vector memory can support this type of memory access
without the bank-conflict problem. The second stage of
computation that adds the homogeneous solutions can be
conducted with a simple one-bank memory structure
because this uses sequentially ordered data.

5. EXPERIMENTAL RESULTS

We conducted experiments with two architectures. One is
the performance comparison of parallel computation
methods for a first order recursive equation using the Intel
Pentium-SSE3 SIMD instruction set. The other is the
performance estimation of the multi-block filtering
algorithm for an AM-th order recursive filter using a
hypothetically modeled scalable SIMD computer, where
two different memory systems are equipped to know their
performance effects.

5.1. Pentium-SSE3 based implementations

We used an Intel Pentium Dual-Core CPU based system
with 2.0 GHz clock frequency for this experiment. The Intel
C++ compiler (ver.10.1) that supports the intrinsic functions
for the SSE3 instructions is used for this experiment. Data
arithmetic is conducted in single precision floating-point
arithmetic. The first order recursive filtering programs that
are based on the sequential form, sequential form with 4-
times loop unrolling, block filtering, recursive doubling, and
multi-block filtering algorithms are developed. Except for
the sequential form, SIMD instructions are used as much as
possible. The dual-core feature of the target CPU is not
exploited in this experiment to isolate the effect of the
SIMD data-path for the recursive filtering algorithm
implementations. The multi-block filtering method uses the
four by four matrix transpose macro included in the Intel
C++ compiler to rearrange data.

The number of execution cycles and instruction profiling
results are shown in Table 1. To measure the execution
cycles, 2x10° samples are processed 256 times. The cycles
show the number of CPU core clock sampling events
occurred while the program runs in that procedure. The
event occurs 1,000 times in a second. In the profiling result,
the numbers inside parentheses show the numbers of
instructions per output sample.

The execution-cycle results show that the block filtering
algorithm uses the largest amount SIMD arithmetic
instructions (2.3 instructions per sample), while the
recursive doubling and the multi-block filtering methods
need quite small SIMD arithmetic instructions. However,
the recursive doubling method requires the largest number
of cycles for SIMD data rearrangement, which results in the
poorest performance among the parallel processing
algorithms. This confirms that reducing the data
arrangement overhead is very important in SIMD processor

based implementations. Overall, the speed-up performance
of the parallel processing algorithms is not very impressive
in two reasons. One reason is that the number of SIMD-
ways for the Pentium SSE3 is only four, thus the maximum
speed-up due to SIMD processing is bounded by four. The
other reason is that the Pentium CPU does not equip a
vector memory unit, and as a result large data rearrangement
overhead cycles hamper the performance increase.

Table 1. Comparison of developed computation methods

Seque | Loop Block | Recur. Multi-
ntial | unroll | filter | doubl. | block
seq. filt.

Cycles 3,820 | 2,671 | 1,982 2,290 1,960
Speedup 1.00 1.43 1.93 1.67 1.95
CPI 2.37 2.08 | 1.493 1.856 2.11
# total inst. 6(6) | 19(4.8) | 20(5) | 32(4.6) | 56(3.5)
# SIMD inst. 0 0| 194.8) | 29(4.1) | 53(3.3)
# SIMD arith. 0 0 [ 9(2.3) | 6(0.86) | 14(0.88)
# SIMD rearr. 0 0| 5(1.3) | 14(2.0) | 19(1.2)
# SIMD others 0 0| 5(1.3) 9(1.3) | 20(1.3)
# of samples 1 4 4 7 16
per iteration

5.2. Scalable SIMD processor based implementations

In order to evaluate the performance with the increasing
number of SIMD-ways and also know the effects of a vector
memory unit, the performance is measured using a model of
a scalable SIMD processor. The SIMD processor for the
performance evaluation is based on ARMv4 architecture
and includes a Px16bit SIMD ALU and 16 vector registers.
The detailed architecture and the corresponding SIMD
instruction set are explained in [4]. All SIMD instructions
except for SIMD memory instructions take one cycle delay.
The architecture equips a multi-port vector memory unit.
The multi-port vector memory unit allows to access vector
data without overhead for alignment and reorganization,
while the single-ported conventional memory unit consumes
overhead cycles for non-aligned or complex vector access
operations.

The program for an M-th order recursive filtering is
shown in the Appendix. The performance is evaluated for a
2" order recursive digital filter. The program was generated
using a vectorizing C compiler.

The performance for the implementation of a second
order digital filter is shown in Table. 2. The numbers of
clock cycles are shown, and the speed-up results are also
given inside of the parentheses. The performances with and
without a vector memory unit are compared. The results
show that it is possible to obtain a quite good speed-up with
a vector memory unit, but the speed-up without a vector
memory unit saturates quite rapidly as the number of SIMD-
ways increases.




Table 2. Number of cycles with scalable SIMD processor

P=| P=4 P=§ P=16 | P=32
Sequential 7,167
alg. (1)
Multi-block 6,147 | 4,355 | 2,947 2,243
filtering without (1.17) | (1.65) | (2.43) | (3.20)
vector memory
Multi-block 4,866 | 2,434 | 1,218 610
filtering  with (1.47) | (2.94) | (5.88) | (11.75)
vector memory |

6. CONCLUDING REMARKS

We have compared three parallel computation methods for
recursive filtering equations using the SIMD instruction set
on a Pentium CPU. The block filtering method needs a large
number of arithmetic operations, but the data structure is
quite regular. The recursive doubling method reduces the
number of arithmetic operations by reusing intermediate
results, but this method demands rather complex addressing
of operands. The multi-block filtering method, which
separately computes the particular and transient solutions,
requires the least number of arithmetic operations when the
number of SIMD-ways increases, however this needs data
transpose operations that are very inefficient in a SIMD
processor without a vector memory unit. This study shows
that not only the number of arithmetic steps but also data
access patterns affect the speed-up performance of parallel
recursive equations on a SIMD processor very much.
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8. APPENDIX

static int z[ 12+INPUT_SIZE];
static int f{INPUT_SIZE];
static int y[ 12+INPUT_SIZE];
int Lj, kI

for (1=0; I<INPUT_SIZE; +=VEC_LEN*VEC LEN) {
for (j=0; j<VEC_LEN; j++) {
for (k=1; k<NTAPS+1; k++) {
for (i=0: i<VEC_LEN; i++) {
y[NTAPS+VEC LEN*VEC_LEN*[+VEC LEN*i+j]
+= a[k]*y[NTAPS+VEC_LEN*VEC_ LEN*4+VEC_LEN*i+j-k];

// particular solution, loop-carried dependency resolved, vectorized

for (I=0; IKINPUT_SIZE; +=VEC_LEN*VEC_LEN) {
for (i=0; i<VEC_LEN; i++) {
for (k=0; kKSNTAPS; k++) {
for (j=0; j<VEC_LEN; j++) {
y[VEC_LEN*VEC_LEN*I+VEC_LEN¥*i+j]
+=T[j][k]*y[VEC_LEN*VEC_LEN*+VEC LEN*i+j-(k+1)]:

IR RN
IR N

// transient solution, vectorized



