Nasopharyngeal Teratoma (Epignathus)
—Four Autopsy cases—

Sung Hye Park, Gyeong Hoon Kang, Gyeong Hyuck Ko,
Hee Sook Kim* and Je G. Chi

Departments of Pathology, Seoul National University College of Medicine and Cheil General Hospital*

Abstract—Four autopsy cases with nasopharyngeal teratoma were presented. Three cases were stillborns and one case survived for five minutes. All four cases showed a bulky protruding mass out of the oral cavity which arose in the hard palate. One case showed the destruction of the skull base and intracranial extension. Microscopically, the masses showed predominantly immature neuroepithelial components and some mature and immature elements of the parenchymal organs, such as liver, gastrointestinal tract and pancreas. One of the four cases was associated with unilateral renal agensis. The characteristics and histogenesis of nasopharyngeal teratoma are discussed.

Key Words: Nasopharyngeal teratoma, Epignathus, Fetus, Congenital

INTRODUCTION

Nasopharyngeal teratoma is a rare congenital tumor which often shows an impressive and grotesque appearance of a large solid and cystic mass protruding from the oral cavity (Ahlfeld, 1875; Ewing, 1942; Ehrich, 1945; Hatzihaberis et al., 1978). It is commonly called "epignathus," that is, "epi" plus "gnathos" meaning jaw in Greek. There has been a dispute whether it is teratoma or parasitic twin because it shows well-differentiated gross features or histology and occasionally is connected to the host (autosite) by an umbilical cord (Ahlfeld, 1875; Ewing, 1942; Ehrich, 1945). Most of the fetuses bearing a nasopharyngeal teratoma or an epignathous tumor are stillborn and only rarely occur in children over the age of two (Batsakis, 1979; Gnepp, 1986). The tumor occasionally extends to the intracranium. Most nasopharyngeal teratomas contain an immature somatic structure, especially primitive neuroepithelial components. However, true malignancy in a child has never been reported (Foxwell & Kelham, 1958; Calcattera, 1969; Hawkins & Park, 1972; Budrawy et al., 1973). In view of the rarity of this entity, we present four autopsy cases with congenital nasopharyngeal teratoma and also discuss the histogenesis.

CASE REPORT

Case 1

This case was a 32-week-old male fetus who was prematurely delivered vaginally and survived for five minutes. During antenatal care, maternal hydramnios was noted. The birth weight was 2200 gm. On autopsy, a huge protruding mass from the oral cavity was seen, measuring 12.5 x 10.6 x 7.5 cm (Fig. 1). The mass was multilobulated and partially cystic and partially solid. However, no human-like gross appearance was seen. On sagittal section, the mass was attached to the midline of the hard palate. Agenesis of the right kidney, an accessory spleen and an undescended testis were found in the abdominal cavity. Microscopically, the epignathus was teratoma consisting of primitive neural tubes, glial tissue, choroid plexus, liver, spleen, gastrointestinal tract wall, retinal pigment epithelium, salivary glands, bones, teeth and skin (Fig. 2 & 3). There was no axial or appendicular
and contained a mature digestive tract, respiratory tract with bronchial cartilages, liver tissue with extramedullary hemopoiesis, pancreas tissue, lung tissue, kidney tissue, bony islands, a finger-like structure containing chondroid tissue (Fig. 6), retinal pigment epithelium and immature and mature nervous tissue. The immature nervous tissue, consisting of primitive neural tubules, were the predominant component (Fig. 7). No other fetal anomaly was associated. There was no vertebral column. The chromosome studies from the peripheral blood of the parents and the cord blood of the fetus were done. The father showed a normal male karyotype with 46,XY. However, both mother and fetus showed pericentric inversion of chromosome 9 with 46, XY, -9, + inv(q) (p11q21).

Case 3
This 24-week-old female was terminated due to a huge fetal mass and maternal polyhydramnios. This was the third pregnancy of this 29-year-old mother. Previously, one of her two older sisters and a congenital hip dislocation. On autopsy, the fetus was 480gm without the mass. A small mass was found in the midline of the palate (Fig. 8 & 9), and a huge multiloculated mass was submitted separately which was detached from the remaining mass attached to the hard palate. It measured 13 x 12 x 5cm and weighted 330gm. On sagittal section, the mass did not involve the intracranial region. Microscopically, the pharyngeal mass was composed of predominantly primitive neuroepithelial tissue and variously mixed mature tissue including glial tissue, choroid plexus, hepatic parenchyma with gallbladder (Fig. 10), pancreas, gastrointestinal tract, respiratory tract with bronchial cartilages, cartilage islands, bony tissue, squamous cell nests, various loose mesenchymal tissue and skin with dermal appendages. There was no vertebral column. The chromosome study from the cord blood of the fetus and tumor cells were done. The chromosome of lymphocyte of cord blood of the fetus showed 46, XX. However, the tumor cells showed variable chromosomal abnormality such as trisomy, terminal deletion, interstitial deletion and chromosome breakage.

Case 4
This 22-week-old female fetus was terminated on October 28, 1989 due to maternal hydramnios and a huge mass detected by sonogra-
Fig. 2. Low-power view of Case 1 shows predominantly immature neuroepithelial tissue admixed with cartilage islands, respiratory tract, gastrointestinal tract and supporting mesenchymal tissue (H & E, ×2.5).

Fig. 3. In a high-power view of Case 1, immature neuroepithelial tissue appears to be primitive neural tubules (H & E, ×100).
phy. On autopsy, partial disconnection of the head due to dystocia and an irregular-shaped friable mass protruding from the oral cavity and the left zygoma, measuring 16 × 14 × 11 cm, were noted (Fig. 11). On sagittal section of the head, the tumor was attached to the midline of the soft palate (Fig. 12). The tumor extended to and destroyed the left zygomatic region of the face resulting in a protrusion from it. Grossly, it showed friable solid and cystic appearance, and five pairs of foot-like structures with cartilaginous tissue were seen. No other anomaly was noted. Microscopically, the epignathus was immature teratoma, the most part of which was primitive neuroepithelial tissue and glial tissue. Elsewhere, the tumor was intermingled with the respiratory tract wall and bronchial cartilage, hepatic parenchyme, skeletal muscle, gastrointestinal tract (Fig. 13), choroid plexus, retinal pigment epithelium, bone and cartilage. The placenta showed subchorionic and retroplacental hemorrhage.

DISCUSSION

The most frequent site of congenital teratoma is the sacrococcygeal region (Hawkins, 1972; Dehner, 1986). Other common sites are the neck, nasopharynx, mediastinum and retroperitoneal region. The most common form of teratoid neoplasm in the nasopharyngeal region is the dermoid or hairy polyp. True teratomas of this region are extremely unusual (Felder, 1975; Chaudhry 1978). These tumors usually present as a congenital lesion in the neonatal period and only rarely occur in children over the age of two (Gnepp, 1986; Batsakis, 1979). They are six times more common in females (Foxwell & Kelham, 1958). The patients commonly present with dysphagia and respiratory distress, and occlusion of the mouth of the host results in
Fig. 6. Microscopic view of Case 2 shows a digit having a chondroid skeleton and covered by primitive skin

Fig. 7. Low-power view of Case 2 shows predominantly primitive neuroepithelial tissue and glial tissue intermixed with mature tissue elements.
Fig. 8. Gross picture of Case 3 shows a residual pharyngeal mass.

Fig. 9. Sagittal section of Case 3 shows tumor attached to the midline of the hard palate.

Fig. 10. Microscopic view of Case 3 shows well-differentiated hepatic parenchyma with gallbladder and extramedullary hemopoiesis (H & E, x40).
maternal polyhydramnios (Rosenfeld, 1979). Nasopharyngeal teratomas may arise from the sphenoid bone, hard or soft palate, or the jaw (Sallee & Memphis, 1965).

The history of the teratoid parasites of the pharynx and mouth has been well described by Ahlfeld (1875). In 1880, he found 40 cases in the literature; some were attached to the autosite by an umbilical cord. Since the more highly developed parasites showed brain tissue in the upper pole and extremities in the lower, Ahlfeld thought that they were true fetal implantations and the aberrant growth of a totipotent blastomere. Schwalbe (1907) described nasopharyngeal teratoma as an epignathus which he considered to be a various type of asymmetrical double monster. He thought that they were due to dislocation of germ material and classified them into four subgroups according to the degree of organization of the parasite. (1) Class I: parasitic monster attached to autosite through umbilical cord; (2) Class II: ill-defined tumor mass that may be attached to head, neck or thorax; (3) Class III: organized trigeminal oral teratoma; (4) Class IV: mixed tumors generally having the shape of hairy pharyngeal polyps. According to this classification our cases would be categorized into Class III.

Meanwhile, Ewing (1942) classified them as follows: (1) Dermoids: containing tissue of epidermoid and mesodermal origin; (2) Teratoids: containing tissue from the three primary germ layers but poorly differentiated; (3) True teratomas: similar to teratoid tumors but differentiated into tissue resembling organs histologically; and (4) Epignathus: trigeminal in origin and differentiated grossly into organs. However, these ideas of the possibility of a parasitic twin had been abandoned. We never found such reported nasopharyngeal epignathus having a vertebral axis. In our cases, no vertebral axes were identified either. From the late 1950's to 1960, there was some dispute as to whether it was a congenital malformation or a true neoplasm (Foxwell & Kelham; 1958). Today a teratoma is regarded as a true neoplasm because it displays progressive and uncoordinated growth.

Among the four cases presented (Table 1), two were male and two were female. Three cases were artificially terminated due to fetal mass and polyhydramnios detected by ultrasonography during antenatal care. One case died five minutes after birth due to severe respiratory difficulty. All four cases showed a typical protruding epignathus from the oral cavity. In all cases it was also found that the mass was attached to the midline of the hard palate. One case extended to the intracranium and filled half of the cranial cavity, and the other one case destroyed the left zygoma. All four cases were associated with maternal polyhydramnios. Microscopically, all were true teratomas and the most portion was composed of primitive neuroepithelial components. According to the grading system of Norris et al., applied to the ovarian teratoma, our cases were grade III immature teratoma. Although the nasopharyngeal teratoma is composed of an immature somatic element, malignant transformation has never been reported (Dehner, 1986).

The histogenesis of the nasopharyngeal teratoma is controversial. These lesions commonly ori-
Fig. 12. Sagittal section of Case 5 shows the tumor attached to the midline of the soft palate (curved arrow). The oral cavity and mandible are seen (arrow).

Fig. 13. Microscopic view of Case 4 shows well-differentiated gastrointestinal tract (H & E, × 2.5).
<table>
<thead>
<tr>
<th>Case</th>
<th>Gestational Age</th>
<th>Sex</th>
<th>Mass size (cm)</th>
<th>Attached site</th>
<th>Associated anomalies</th>
<th>Maternal polyhydramnios</th>
<th>Karyotype of fetus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>32 wks (Survived for 5 minutes)</td>
<td>M</td>
<td>12 × 10 × 7</td>
<td>Midline of the hard palate</td>
<td>Agenesis of right kidney, Accessory spleen, Undescended testis</td>
<td>Present</td>
<td>Not done</td>
</tr>
<tr>
<td>Case 2</td>
<td>21 wks</td>
<td>M</td>
<td>12 × 11 × 10</td>
<td>Midline of the hard palate & sphenoid bone</td>
<td>Absent</td>
<td>Present</td>
<td>46,XY,-9, +inv(q)(p11q21)</td>
</tr>
<tr>
<td>Case 3</td>
<td>24 wks (Stillborn)</td>
<td>F</td>
<td>13 × 12 × 5</td>
<td>Midline of the hard palate</td>
<td>Absent</td>
<td>Present</td>
<td>46,XX</td>
</tr>
<tr>
<td>Case 4</td>
<td>22 wks (Stillborn)</td>
<td>F</td>
<td>16 × 14 × 11</td>
<td>Midline of the soft palate</td>
<td>Absent</td>
<td>Present</td>
<td>Not done</td>
</tr>
</tbody>
</table>
gin ate at the central site as in our cases where, in early embryonic life, the buccopharyngeal membrane, Rathke’s pouch and the rostral end of the notochord meet. Chaudhry(1978) suggested that these might be the result of misplaced totipotent cells of one or more germinal layers, which escape the physiological-organizing influences that control growth and development under normal circumstances. Such cells retain the ability to proliferate, differentiate and form tumor-like conglomerates of various tissue that are present in a disorganized fashion.

Clinically, the differential diagnosis of nasopharyngeal teratomas includes encephalomeningoceles, gliomas, hemangioma, neurofibromas and heterotopic brain tissue(Heroman et al., 1980). Since heterotopic brain tissue is occasionally found in the newborn nasopharynx(Low et al., 1956; Zarem et al., 1967; Broniatowski et al., 1981), the differentiation cannot always be made by a biopsy alone since pharyngeal teratomas contain an abundance of central nervous system tissue. It should also be noted that occasionally massive teratoma of adjacent anatomic regions can involve the nasopharyngeal region (Ehrlich, 1945). In this series 2 cases underwent chromosomal study. One case showed pericentric inversion of chromosome 9 in the fetus and the mother, while the father was normal. The other case showed normal karyotype.

REFERENCES

Ahlfeld F. Die Missbildungen des Menschen, Leipzig, Grunow, 1880
Batsakis JG. Tumors of the head and neck: Clinical and pathological considerations. Baltimore, Williams & Wilkins Co. 1979, pp. 228-229

Calcaterra T. Teratomas of the nasopharynx. Laryngoscope 1969, 78:165-171
Gnepp DR. Teratoid neoplasms of the head and neck. Dekker Inc. 1986, pp. 1423
Low NL, Scheinberg L, Anderson DH. Brain tissue in the nose and throat. Pediatrics 1956, 18:254-259
Schwalbe E. Die Morphologie der Missbildungen des Menschen und der Tiere. 2 Jena G Fischer, 1907
비인강 기형증(상악체)

4부검 증례

사울대학교 의과대학 병리학교실 및 계열병원 병리과
박성해·강경훈·고정혁·김희숙·지재근

비인강 기형증은 일명 상악체라고 알려진 대단히 드문 질환으로 신생아기에 발견되기는 중요한 기형증이다. 그 모양이 크고 꼭대부 비대비나 구강내에서 밖으로 돌출하는 특이한 양상을 띠고 있고 또 육안적으로나 조직학적으로 분화가 잘 되어 있어 예전부터 그 발생기전에 대해선 많은 논란이 있었던 병변이다.

우리나라 현장 상의 보고에 찾아보기 힘들었던 사물에 병원 부검기록을 검토한 결과로 4례가 있었고 또 이들중 1례는 두개강내로 자라 들어가는 독이야 모양을 나타내어 이중을 부검소견과 함께 보고하였다.

병리학적 검사상 병력 상악체는 비인장과 구강을 포함한 두부를 제외하고는 기타 장기의 기형을 볶고 동반하지 않고 있었음을 알 수 있었고, 예외 없이 구개와 빠져 있거나 때문에 중앙부 구개부가 그 기원이라 여겨졌다. 현미경 소견을 종합하여 미숙 충주신경조직의 증상을 이루고 있었고 기타 기형증에서는 혼히 관찰되지 않는 복합 장기조직 특이한 조직이 혼히 관찰되었을 가능성이 있었다.