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A Wavelet-Based Method for Action Potential
Detection From Extracellular Neural Signal
Recording With Low Signal-to-Noise Ratio
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Abstract—We present a method for the detection of action po-
tentials, an essential first step in the analysis of extracellular neural
signals. The low signal-to-noise ratio (SNR) and similarity of spec-
tral characteristic between the target signal and background noise
are obstacles to solving this problem and, thus, in previous studies
on experimental neurophysiology, only action potentials with suffi-
ciently large amplitude have been detected and analyzed. In order
to lower the level of SNR required for successful detection, we pro-
pose an action potential detector based on a prudent combination
of wavelet coefficients of multiple scales and demonstrate its per-
formance for neural signal recording with varying degrees of sim-
ilarity between signal and noise. The experimental data include
recordings from the rat somatosensory cortex, the giant medial
nerve of crayfish, and the cutaneous nerve of bullfrog. The pro-
posed method was tested for various SNR values and degrees of
spectral similarity. The method was superior to the Teager energy
operator and even comparable to or better than the optimal linear
detector. A detection ratio higher than 80% at a false alarm ratio
lower than 10% was achieved, under an SNR of 2.35 for the rat
cortex data where the spectral similarity was very high.

Index Terms—Action potential detection, extracellular neural
signal recording, signal-to-noise ratio, Teager energy operator,
wavelet transform.

I. INTRODUCTION

T HE extracellular recording of neural signals consists of ac-
tion potentials from several neurons near the electrode site,

and background noise. Since information of the nervous system
is encoded in the form of firing frequency or firing time [1], the
first procedure in the interpretation of neuronal signals is the
detection of the action potential firing, i.e., the neural spike. In
spite of the fundamental importance of this, only a few studies
on neural spike detection have appeared in the literature. In most
cases, major efforts have been made to optimize experiments
so that the recorded waveforms are of sufficient quality to en-
able reliable detection by simple traditional methods. However,
situations are often encountered where the signal-to-noise ratio

Manuscript received March 4, 2002; revised February 8, 2003. This work was
supported by the Korea Science and Engineering Foundation (KOSEF) through
the Nano Bioelectronics and Systems Research Center.Asterisk indicates cor-
responding author.

*K. H. Kim is with the Functional Magnetic Resonance Imaging (fMRI) Lab-
oratory, Brain Science Research Center, KAIST, Daejeon 305-701, Korea, on
leave from the Human-Computer Interaction Laboratory, Samsung Advanced
Institute of Technology, P.O. Box 111, Yongin 499-712, Korea.

S. J. Kim is with the School of Electrical Engineering and Computer Science,
Nano Bioelectronics and Systems Research Center, Seoul National University,
Seoul 151-742, Korea

Digital Object Identifier 10.1109/TBME.2003.814523

(SNR) of the recording is so poor as to prohibit neural spike
detection using simple thresholding, and in some cases, such
as the recording from a long-term implanted electrode, precise
experimental control cannot be achieved. Moreover the statis-
tical characteristics of background noise can be very similar to
those of the target signal (action potential). This statistical simi-
larity arises from the fact that the major noise source can be elec-
trical potentials from neurons that are not coupled sufficiently
tightly to electrode sites. This “neuronal” or “biological” noise
may result in more serious problems in the case of a recording
from cortex or ganglia where the density of neurons can be high.
This statistical similarity prohibits the satisfactory enhancement
of SNR using conventional signal processing techniques such
as bandpass filtering, and as a result, the detection problem be-
comes much more difficult to solve.

Because the computational power required for the use
of more sophisticated algorithms is now readily available,
efforts directed toward the development of signal processing
techniques for action potential detection are within the realm
of possibility. The situation is similar to the problem of QRS
detection from an electrocardiogram (ECG), in that the goal is
to detect short transient waveforms in the presence of back-
ground noise, however, this requires less computational power
due to the lower sampling rate employed. Numerous studies
on the development of the QRS detection algorithm have been
reported during past several decades [2], [3].

A considerable number of studies on the classification of
multiunit extracellular recordings can be found in the literature
[4]–[7]. Most of these are concentrated on improvements in
classifier performance. However, the action potential detec-
tion is a preliminary step which can dominate the overall
performance of a neural spike sorting system. Bankman and
Janselewitz [8] described a method for the elaborate determi-
nation of threshold level: they determined it by analyzing the
probability density function (pdf) of the background noise,
i.e., by modeling the initial segment of the recording where
no neural spike fires as a white Gaussian noise. However,
no matter how well the threshold level is selected, the direct
application of thresholding has fundamental limitations in
case of low SNR values that are the focus of this paper.
Background noise modeling as a white Gaussian noise is also
not appropriate, as demonstrated by Fig. 4 of this paper and
by Feeet al. [9] who showed similar plots of the spectra of
action potentials and background noises. Most methods for
transient signal detection use appropriate signal processing
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techniques before applying thresholding, in order to boost the
target signal while shrinking the background noise [10]. In
this procedure,a priori knowledge of the characteristics of
signal and noise are utilized. Another study by Bankmanet
al. [4] reported that a prewhitening filter enhanced SNR by
assuming a complete knowledge of the spectral characteristic
of the background noise. Chandra and Optican [5] reported on
a neural-network-based action potential detection and classifi-
cation [5]; but this implies the availability of a training set with
a known class label, which is unrealistic in cases of frequently
observable low SNR recordings. In real situations, especially
when the SNR is very low, this quantitative information is not
available and can even be time-varying.

Recently wavelet-transform-based methods for neural spike
detection have been reported. Oweiss and Anderson [11]
proposed an array signal processing technique for neural spike
detection that involves signal subspace estimation and threshold
denoising in the wavelet packet domain. They showed that this
method enables the generalized likelihood ratio test (GLRT)
without computing the noise-only covariance matrix. This
method is effective when a multichannel electrode is used.
Nakataniet al. [12] reported on a method for determining the
scales to be considered and the threshold levels at each scale,
for detection and waveform denoising. Their focus appears to
be on the latter, and they compared its performance only with
that of conventional wavelet denoising and showed that its
detection performance is not as good as that of conventional
wavelet denoising.

In this paper, we present a novel wavelet-based nonlinear
method for the detection of action potential from single channel
extracellular recording. We show its performance on various
experimental recordings where the SNR is low, and the simi-
larity between the characteristics of the target signal and back-
ground noise is also significant. These include data from the
somatosensory cortex of the rat, the crayfish giant medial
nerve, and the cutaneous nerve of the bullfrog. Differently
from the method reported by Nakataniet al. [12] based on the
wavelet denoising, our method is derived from nonlinear com-
bination of multiple approximations of matched filters. Our
method utilizes the point-wise product of wavelet transform
(WT) coefficients over several selected scales. The wavelet
basis function has a “spiky” waveform with a short time sup-
port, and thus, a single subband of the wavelet decomposition
can be regarded as performing the function of the matched
filtering, without a priori knowledge of the target signal and
noise. From classical detection theory, the matched filter (along
with the prewhitening filter) is known to provide an optimal
linear method for signal enhancement under Gaussian noise
[10]. However, this solution requires a precise knowledge of
the target signal waveform and the spectral characteristics of
the noises. Unfortunately, in many cases, including ours, none
of this information is easily obtainable, and the characteristics
of the noise are even nonstationary. The performance of our
detection method was compared with those of the above inap-
plicable optimal linear method, and the Teager energy operator
(TEO) [6], [13] which is a nonlinear method exploiting the in-
stantaneous rise in amplitude and frequency of the dominant
frequency component.

II. EXPERIMENTAL METHODS

A. Recording From Rat Somatosensory Cortex

A semiconductor microelectrode fabricated by the authors’
group [14] was used for recording from the somatosensory
cortex of Sprague–Dawley rats. Animals with body weights
from 200–300 g were anaesthetized with urethane (1 g/kg, i.p.).
After mounting the animals in a stereotaxic frame, a craniotomy
(2–3 mm diameter) was performed over the primary somatosen-
sory (SI) cortex using the bregma as the initial point of reference.
Detailed methods pertaining to this surgery can be found in
[15]. The semiconductor microelectrode was inserted into the
forepaw area of the SI with a micromanipulator. Stainless-steel
wire located in the subcutaneous region on the side of the cere-
bellum was used as a reference electrode. Electrical stimulation
was provided by a bipolar concentric stimulating electrode and
consisted of monophasic square pulses (pulse width 0.1 ms,
frequency 1 Hz) passed through a stimulator (Model 1830,
World Precision Instruments) with an isolation unit to provide
constant current ( ). The stimulating electrode was
inserted under the center of the receptive field and was fixed
firmly to prevent any movement. The amplified and bandpass
filtered (300 Hz to 3 kHz) signal is transferred to a digital storage
oscilloscope for visual inspection and then to the data acquisition
system for digitization and subsequent storage and analysis
using a personal computer. The sampling rate for the digitization
was 20 ksamples/s, and the signal was subsequently resampled
at 10 ksamples/s by a cascade of an antialiasing finite impulse
response (FIR) low-pass filter designed by the Kaiser window
method [16] and decimation.

B. Recording From Crayfish Medial Giant Nerve

A planar-type microelectrode array was used for recording
from the medial giant nerve of crayfish. The medial giant nerve
is a bundle-structured set of motor axons and sensory axons
crossing the body center, and can be easily laid down on the
surface of the planar microelectrode. Details relating to the dis-
section can be found in [17]. The electrode site was made of
gold, and the impedance of the electrode site was in the range of
200–800 at 1 kHz. The evoked response to the mechanical
stimulus applied to the tail-fin by probing lightly with a glass
probe was recorded. The signal from the microelectrode array
was preamplified by an ac coupled, fully differential amplifier
(ACamp08, AC Instruments Corp.) having an input impedance
higher than 1 , further amplified, and bandpass filtered (300
Hz to 3 kHz).

C. Recording From Bullfrog Cutaneous Nerve

A hook-type stainless-steel electrode was used for recording
from the cutaneous nerve of the bullfrog responding to a me-
chanical stimulus given to the skin. The electrode impedance
was about 10 at 1 kHz. After dissecting the backside skin
of the bullfrog, a peripheral nerve bundle is hooked by the elec-
trode. The nerve bundle, containing the axons from the cuta-
neous mechanoreceptor, was identified by monitoring the re-
sponse to the mechanical stimulus applied to the skin by probing
with a glass micropipette. Low-pass filter with 10-kHz cutoff
frequency was used along with 60-Hz notch filter.
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Fig. 1. Transient signal characterized by amplitudeA, and scale�.

III. A CTION POTENTIAL DETECTION USING WAVELET

COEFFICIENTCOMBINATION

A. Detection Algorithm

Consider following equation that defines WT:

(1)

where the real numbersand denote scale and translation, re-
spectively. As shown by (1), the WT essentially carries out a cor-
relation analysis between the input signal ( ) and the trans-
lated and dilated version of a reference signal called the mother
wavelet ( ) [18]. Hence, it would be expected that the output
would have local maxima where the input signal most closely
resembles the analysis template, i.e., the wavelet function. The
wavelet basis functions have “spiky” (biphasic or triphasic and
so on) waveforms with compact support, and accordingly are
similar in shape to the action potential. In addition, the basis
function is dilated over many scales. Thus, at some particular
scales, it can act as a number of effective approximations of the
matched filter, even though the exact waveform of the target sig-
nals is not known. This can also be stated more formally as fol-
lows. Suppose the goal is to detect a transient signal that
can be characterized by amplitude, arrival time , and dura-
tion , as shown in Fig. 1. The detection problem can be posed
as a hypothesis testing as follows:

(2)

Here denotes the background noise and is assumed to be a
colored Gaussian random process. Assuming that the spectrum
of is known, the problem can be transformed into the one
assuming a white Gaussian random process by application of
prewhitening filter as follows:

(3)

where the noise is now a white Gaussian random process.
Here it is assumed that the target signal is known up to

unknown parameters , , and , which denote amplitude,
arrival time, and scale, respectively. By GLRT [10], which uses
the maximum-likelihood estimates of unknown parameters,
Neyman–Pearson test statistic [10] is obtained as follows:

(4)

By taking logarithms and simplifying, we obtain

(5)

Here the right side of (5) indicates the dependency of the
threshold level on the amplitude, arrival time, and scale. Note
that it is obvious from (5) that the amplitudedoes not affect
the test statistic, but only changes the threshold level and, thus,
a lack of knowledge of is not relevant. From (1) and (5), we
can deduce that the wavelet analysis at the scale that yields
the maximum output is equivalent to the GLRT, provided that
exact template waveform of the signal is used as the wavelet
basis function, i.e., . In fact, the derivation of (5) is
equivalent to that of the matched filter as shown in [10], except
for the assumption that the scaleis unknown. It becomes
clear that wavelet analysis may provide a valuable practical
tool for the approximation of matched filtering, although
there are several assumptions that cannot be satisfied in an
actual situation of neural signal recording. For example, the
wavelet basis cannot be exactly the same as the template
waveform , and the background noise cannot always be
assumed to be a Gaussian random process. Our purpose here
is to show that by performing wavelet decomposition over
many scales and selecting some of those that yield faithful
representation of the signal, it is possible to obtain a number of
useful approximations of the matched filtering.

Therefore, it is possible to implement an effective action po-
tential detection scheme by combining the wavelet coefficients
calculated over a series of multiple scales. We use the point-wise
product of the wavelet coefficients over some successive scales.
This exploitation of the point-wise product is intended to per-
form the role of logical “AND” operation (although not pre-
cisely) over multiple scales. Details of the procedure are as fol-
lows. First, the wavelet coefficients and their absolute values
are calculated for 5 dyadic scales, i.e., , and the scale
where the absolute value yields a maximum (this scale is called

) is selected. Subsequently, as shown below in (6), ,
the point-wise product of the wavelet coefficients over three
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Fig. 2. Block diagram of the proposed detection method (DWT product detector).

Fig. 3. Modeling of the background noise of the crayfish medial giant nerve recording. Solid line: actual data. Dotted line: estimation by the fifth-order AR model.

consecutive scales up to is calculated for all time sam-
ples, , as follows:

(6)

This is similar to an efficient edge detection technique used
in the field of image processing. Before the advent of wavelet
theory, Rosenfeld and Thurson [19] devised an edge detection
method employing the calculation of the point-wise product
of smoothed gradients, where the degree of smoothing takes
dyadic values. More recently, Sadler and Swami [20] reported
on a statistical analysis of Rosenfeld’s method. However, these
studies provide no guidelines for the selection of the scales to be
used in product calculation, and it must be chosen carefully so as
to be suited for a specific desired application. We found that the
choice of three consecutive dyadic scales up to is appro-
priate for most cases of action potential detection. The inclusion
of excessively large or small scales considerably decreased the
signal peaks because the correlation between the analysis tem-
plate (dilated wavelet basis) and the target signal (action poten-
tial) is decreased for those scales. The inclusion of too coarse a
scale also decreased the signal peaks in the resulting waveform
of because of the large mismatch in the location of the
peaks among different scales.

The wavelet decomposition into dyadic scales can be com-
puted by several means. It can be shown that a rapid compu-
tation is possible when the translation is limited to the integer
multiples of the scale [18], [21]. This yields a nonredundant,
orthogonal representation and is usually called discrete wavelet
transform (DWT). The DWT can be performed by successive

applications of a bank of quadrature mirror filters and decima-
tion by factor of two between them. A slightly more compli-
cated version, which is called stationary or undecimated DWT
(UDWT) and has the advantage of translation-invariance, can
be obtained by omitting the decimation [21]. We tested both the
decimated DWT and UDWT, and the performances of detection
were similar for our data. However, the UDWT was chosen con-
sidering its potential benefit in more exact waveform estimation.
The coiflet basis function [22] was used for our system.

The DWT product is smoothed by convolution with the
Bartlett window to mitigate malicious effects of spurious peaks
due to cross terms, background noise, and slight mismatches
in the location of the signal peaks over different scales. The
window length was determined empirically, taking all these ef-
fects into consideration and found to be suitable when it is about
half the duration of the target signal. The final output of the pro-
posed action potential detector, , is expressed as follows:

(7)

Here denotes the Bartlett window. Block diagram de-
scribing the DWT product method is shown in Fig. 2.

B. Performance Test

Performance tests were carried out while varying the level of
the background noise, and the similarity between the signal and
noise. For this comprehensive test, a large amount of data sets
representing real characteristics of various experimental neural
signal recordings were required. A time-series prediction tech-
nique was used for the modeling of experimental background
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Fig. 4. Waveforms (left columns) and power spectra (right columns) of the three neural signals considered in this paper. (a) and (b): Rat somatosensory cortex
recording. (c) and (d): Crayfish recording. (e) and (f): Bullfrog recording. The arrows indicate the position of action potential firing.

noise in order to construct this large data set. From the template
waveform and the model of the noise, a test data set of arbitrary
SNR could be generated. Template waveforms were obtained
by averaging distinct action potential waveforms from the ex-
perimental recordings, using our detection method assisted by
visual inspection. Several linear and nonlinear time-series mod-
eling techniques such as the autoregressive (AR), autoregres-

sive moving average (ARMA) model [23], and time-delayed
feedforward neural network (TDNN) [24] were tried for the
modeling of the background noise as colored Gaussian noise.
For our rat cortex and crayfish data, we were able to obtain
satisfactory results using the AR model as shown in Fig. 3.
For the bullfrog data, the ARMA was more appropriate for the
background noise modeling, however, the AR model with a
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Fig. 5. Illustration of the rationale for the DWT detector. As denoted by the thick line, which is nearly vertical, the peaks in the wavelet transform coefficients due
to the transients in input signal appear at nearly same time point over successive scales, while the peak due to the background noise (denoted as “

p
”) is prominent

only on a single scale. “}” indicates the scales that are included in the detection. The arrow indicates the position of action potential firing.

high order was also acceptable. The order of the AR models
was determined using Akaike’s information criteria [23], but
the order selection was not crucial to the performance of the
time-series modeling, since satisfactory prediction was possible
for a large range of AR model orders. We used the fifth-order
AR model for the rat cortex and crayfish data, and the fif-
teenth-order model for the bullfrog data. Calculation of the AR
model coefficient was performed by solving the Yule–Walker
equation [23], or using the third-order spectra-based method
[25]. The SNR was defined as ratio of powers of target signal
waveform and noise, as follows:

SNR
peak-to-peak value of action potential waveform
root-mean-square value of pure noise segment

IV. RESULTS

Fig. 4 shows the waveforms (left columns) and power spectra
(right columns) for the three recordings. The arrows in Fig. 4(a),
(c), and (e) indicate the position of action potential firing. The

solid and dotted lines in Fig. 4(b), (d), and (f) correspond to the
power spectra of the action potentials and those of the back-
ground noises, respectively. The SNRs of the data shown in
Fig. 4 were about 2.16 for the rat cortex recording [Fig. 4(a)
and (b)], 2.15 for the crayfish recording [Fig. 4(c) and (d)], and
2.13 for the bullfrog recording [Fig. 4(e) and (f)], respectively.
Significant spectral overlap between the signal and background
noise is evident for all the recordings considered in this paper,
and this has been also shown by Feeet al.[9]. The large amount
of spectral overlap makes the action potential detection problem
more difficult. Fig. 5 shows the rationale for the DWT product
detector. As denoted by the thick line in Fig. 5, the peaks in the
wavelet transform coefficients due to the transient in the input
signal appear at nearly the same time points over successive
scales, while the peak due to the background noise (denoted by
“ ”) is prominent only on single scale.

A comprehensive performance test of the proposed detector,
and a comparison with the matched filter and the TEO are pre-
sented below. The threshold level for detection was determined
by manual adjustment, based on data segments containing about
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Fig. 6. (a) The input waveform of the recording from rat somatosensory cortex (upper panel), and the output waveforms when the input is applied to the DWT
product detector (middle panel) and the TEO (lower panel) detector. (b) The input waveform of the crayfish recording (upper panel), and the output waveforms
when the input is applied to the DWT product detector (middle panel) and the TEO (lower panel) detector. The arrows indicate the position of action potential
firing.

20 action potentials while attempting to minimize the wrong in-
clusion of noise (i.e., false alarms) and detection misses. A sta-
tistical determination of the threshold level was not attempted
here because it requires a complete knowledge of the pdf [10].
Although it was possible to obtain knowledge of the pdf for the

test data set by Monte Carlo method [10], our goal was to de-
vise and test a method that is generally applicable to common
experimental situations.

Fig. 6(a) shows the input waveform of the recording from
the somatosensory cortex of the rat, and the output waveforms
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Fig. 7. The limited efficacy of the prewhitening filter for action potential detection. Upper panel: Rat cortex recording with SNR� 2:76. The arrows indicate the
position of action potential firing.

Fig. 8. Comparison of the signal quality after processing by the matched filter and proposed detectors. Input: Rat cortex recording, SNR� 2:33. The arrows
indicate the position of action potential firing.



KIM AND KIM: WAVELET-BASED METHOD FOR ACTION POTENTIAL DETECTION 1007

Fig. 9. Left columns:P versus SNR. Right columns:P versus SNR. Solid lines: DWT detector. Dotted lines: TEO detector. (a) Rat cortex recording.
(b) Crayfish recording. (c) Bullfrog recording.

when the input is applied to the DWT product detector and
the TEO detector. The upper panel shows the input waveform,
and the SNR is about 2.52. The output from the TEO de-
tector (bottom panel) has more distinct peaks than the output
from the DWT detector (middle panel) at points where the
action potentials fire. However, the TEO detector appears to
produce a larger amount of spurious peaks. This phenomenon

also occurred in other situations, when recordings from the
crayfish [Fig. 6(b)] and the bullfrog (not shown) were used as
inputs.

The performance of the proposed method was compared with
those of the TEO, the prewhitening filter, and the matched filter
with preceding prewhitening filter [10]. Fig. 7 shows the lim-
ited efficacy of the prewhitening filter for the action potential
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detection. The prewhitening filter was helpful only for the cray-
fish data. In the case of the rat cortex data shown in Fig. 7 and
the bullfrog data (not shown), signal qualities were somewhat
deteriorated. Fig. 8 shows a comparison of the signal quality
after processing by the matched filter with prewhitening, with
our detectors. It is not possible to judge whether this linearly op-
timal method is superior or inferior to our detector from Fig. 8
alone. Later we will show a more detailed comparison of de-
tection performance by receiver operating characteristic [10].
In order to investigate detection performances more thoroughly,
we plotted the probability of detection ( ) and the probability
of false alarm ( ) at various levels of SNR. Fig. 9(a) shows
the results for the rat recordings. The solid and dotted lines in
Fig. 9 correspond to the DWT and the TEO detectors, respec-
tively. The test was performed using data that included 1,000 ac-
tion potentials. In Fig. 9(a) the level of is intentionally con-
trolled to be similar for the two detection methods, by adjusting
the threshold level. For similar , the DWT product detector
yielded a higher than the TEO detector, for all SNR levels.
Fig. 9(b) shows the result for the crayfish recording, where we
attempted to hold the value of to a similar level. Here, lower

(i.e., better performance) could be obtained by the DWT
product detector. This improved performance of the DWT de-
tector was more profound for the case of the bullfrog recording
shown in Fig. 9(c).

A comparison of the detection performance by means of the
receiver operating characteristic (ROC) is presented. The ROC
curve was obtained by plotting as a function of [10].
Each data point in a curve corresponds to each different
threshold value. Fig. 10(a)–(c) shows the results for the rat
cortex data, crayfish data, and bullfrog data, respectively. In
Fig. 10(a), the TEO and DWT product detector shows similar
level of when a high level of was allowed, but the
latter shows a superior performance for a low level of .
Both were superior to the matched filter with prewhitening. For
the crayfish data [Fig. 10(b)], the difference in performance
between the two detectors was larger. The performance of the
TEO detector was slightly inferior compared to the matched
filter for a low . The DWT product detector showed
consistently higher performance than that of the matched filter.
For the bullfrog data, as shown in Fig. 10(c), both were not as
good as the optimal linear method, however, the performance
of the DWT product detector was comparable. In summary,
the proposed detector showed high performance, superior or
comparable to that of the matched filter with prewhitening,
which is unrealizable.

Finally the application of the proposed detector to an actual
experimental recording from the rat somatosensory cortex is
presented. Fig. 11(a) and (b) shows a collection of the wave-
forms detected by the proposed method and a scatter plot of its
principal components, respectively. Two clusters are distinct in
the scatter plot in Fig. 11(b). This is also clear from Fig. 11(a)
where waveforms from two units are present. It contains 210
detections. However, in Fig. 11(c) where conventional ampli-
tude thresholding was used to detect action potentials, it is
not apparent whether two units are present in the detected
waveforms. It contains 566 detections. We can deduce from

Fig. 10. Comparison of detection performance by the ROC curve. (a) Rat
cortex data (SNR� 2:33) (b) Crayfish data (SNR� 2:38) (c) Bullfrog data
(SNR� 1:91).

the scatter plot in Fig. 11(d) that the detected waveforms in
Fig. 11(c) include numerous false alarms, since there is a noise
cluster here in-between the two clusters that are also present in
Fig. 11(a). When we increased the threshold level to remove
these false alarms, many correct action potentials were also
removed and a considerable number of noise segments still re-
mained. This is shown in Fig. 11(e) and (f). Here again, 210
detections were included, but a large portion of these is from
the false inclusion of noise.
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Fig. 11. (a) Collection of the waveforms detected by the proposed detector. (b) Scatter plot of the first two principal components extracted from the data shown
in (a). (c) Collection of the waveforms detected by amplitude thresholding. (d) Scatter plot of the first two principal components extracted from thedata shown
in (c). (e) Collection of the waveforms detected by amplitude thresholding when a higher threshold level was used in order to remove the false inclusion of noise
segments. (f) Scatter plot of the first two principal components extracted from the data shown in (e).

V. DISCUSSION ANDCONCLUSION

The detection method proposed in this paper does not require
“quantitative” a priori information on either the target signal
and background noise, and only involves “qualitative” informa-
tion that is common to the neural signal recordings. This is also
valid for the previously described TEO detector [6], where we
simply made use of the fact that the instantaneous frequency
and amplitude of the dominant frequency component increases
when the action potential fires. This is a clear advantage over
several previously proposed action potential detection methods,
such as [7] and [5]. In order to use the method of Bankmanet

al. [4] or that of Gozani and Miller [7], a complete knowledge
of the background noise and the action potential waveforms of
all the units present in the recording is required. Neural-net-
work-based action potential detection [5] necessitates a training
set with known class label, and this requirement is equivalent
to a complete quantitative knowledge of the target signal and
noise.

Among the two methods proposed by the authors, the cur-
rent method, the DWT product detector, shows superior perfor-
mance for all the recordings considered to date. From the view-
point of computational requirements, the TEO required about
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ten times less number of floating point operations and, thus, is
better suited to real-time implementation. However, when im-
plemented on a Pentium III PC with 500-MHz clock speed, the
difference in execution time was not great (1.02 times faster
than the wavlet method for data points processing). Some
methods that are similar to our wavelet-based action potential
detector have been proposed for QRS detection from ECG sig-
nals [2], [3], [28]. Studies by Kadambeet al. [2] and Li et al.
[28] involve searching for all the local maxima of the absolute
value of the wavelet coefficients within the analysis window
over some successive scales and, therefore, can be time-con-
suming. This becomes much more problematic in case of neural
signal processing where the sampling rate is about 100 times
higher than the case of ECG processing. Moreover, QRS detec-
tion seems to be a much easier problem than the action poten-
tial detection from extracellular neural signal recordings, with
respect to both the SNR and the similarity between the signal
and background noise.

Several wavelet-based methods for neural signal analysis
have been reported [11], [12], [26], [29]. Hulataet al. [29]
proposed an application of wavelet packet decomposition for
neural spike detection and sorting, although emphasis was
given to the latter. Their method does not appear to be appro-
priate for a fully automated system, since it requires the initial
manual grouping of signals into several neural spikes and noise
to find the basis. An action potential detection method utilizing
wavelet denoising was proposed by Nakataniet al. [12]. This
method is based on the removal of the background noise which
is effective when it shows white spectrum. Their performance
test was demonstrated for cases where the background noise
was a Gaussian random process that was lowpass-filtered to
the cutoff frequency of 4 kHz, and the action potential was
bandlimited to 100 Hz to the 2 kHz. Hence, background noise
can be treated as a white Gaussian process if the sampling rate
is changed to 4 kHz (which is feasible from the Nyquist the-
orem) and, thus, this is similar to the problem of band-limited
signal detection under white Gaussian noise, where the wavelet
denoising is effective. Their method may be less effective in
cases where the background noise shows a spectral character-
istic similar to that of the action potential, and the benefit of
their method is mainly on accurate waveform estimation by
noise removal.

Oweiss and Anderson [11], [26] described a series of
array signal processing techniques for neural spike detection
and sorting. They exploited signal subspace estimation and
threshold denoising in the wavelet packet domain. Their
methods yield high performance under low SNR, and seem to
provide efficient solutions when a multichannel electrode array
is employed and the activities of all the units under consid-
eration are recorded by all the channels under investigation.
Another multichannel technique, blind source separation using
independent componenet analysis, has been applied to the
problem of neural spike sorting [27], but its performance under
low SNR has not been presented.

The possibility exists for improving the performance of the
proposed detector by applying some slight modifications. For
example, it might be possible to utilize information provided by
incorporating a more elaborate selection of subbands. Wavelet

packet decomposition might be applied in order to broaden the
extent of subbands to be included for the detection. An ap-
propriate criterion should be devised to guide in the selection
of scales. A novel technique other than the point-wise product
should be developed to combine the information from the se-
lected subbands to achive an improved detection performance.

In conclusion, an action potential detector using the
point-wise product of wavelet coefficients of multiple scales
is presented. The method involves multiple approximations
of matched filters and nonlinear combination thereof. The
proposed method was tested for various SNRs and degrees of
spectral similarity between the signal and background noise.
The detection performance achived was better than that of the
TEO [6] and even comparable or superior to that of the optimal
linear detector. Since the proposed action potential detector
does not require a quantitative knowledge of the signal and
noise of the recording under investigation, it can be utilized for
the online or first offline analysis of neural signal recordings,
where such quantitative information is not readily available.
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