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A Wavelet-Based Method for Action Potential
Detection From Extracellular Neural Signal
Recording With Low Signal-to-Noise Ratio

Kyung Hwan Kim* Member, IEEEand Sung June KipnMember, IEEE

Abstract—We present a method for the detection of action po- (SNR) of the recording is so poor as to prohibit neural spike
tentials, an essential first step in the analysis of extracellular neural detection using simple thresholding, and in some cases, such
signals. The low signal-to-noise ratio (SNR) and similarity of Spec- o 6 recording from a long-term implanted electrode, precise
tral characteristic between the target signal and background noise . ) )
are obstacles to solving this problem and, thus, in previous studies gxperlmental (l:or.1trol cannot be achleyed. Moreover th.e statis-
on experimental neurophysiology, only action potentials with suffi- tical characteristics of background noise can be very similar to
ciently large amplitude have been detected and analyzed. In order those of the target signal (action potential). This statistical simi-

to lower the level of SNR required for successful detection, we pro- 1,44 arises from the fact that the major noise source can be elec-
pose an action potential detector based on a prudent combination

of wavelet coefficients of multiple scales and demonstrate its per- {fic@l potentials from neurons that are not coupled sufficiently
formance for neural signal recording with varying degrees of sim-  tightly to electrode sites. This “neuronal” or “biological” noise
ilarity between signal and noise. The experimental data include may result in more serious problems in the case of a recording
recordings from the rat somatosensory cortex, the giant medial g4y cortex or ganglia where the density of neurons can be high.
nerve of crayfish, and the cutaneous nerve of bullfrog. The pro- . . LT _ .
posed method was tested for various SNR values and degrees ofl Nis statistical similarity prohibits the satisfactory enhancement
spectral similarity. The method was superior to the Teager energy Of SNR using conventional signal processing techniques such

operator and even comparable to or better than the optimal linear  as bandpass filtering, and as a result, the detection problem be-
detector. A detection ratio higher than 80% at a false alarm ratio i

. comes much more difficult to solve.
lower than 10% was achieved, under an SNR of 2.35 for the rat

cortex data where the spectral similarity was very high. Because the computational power required for the use

] ) ) of more sophisticated algorithms is now readily available,
Index Terms—Action potential detection, extracellular neural o049 directed toward the development of signal processing
signal recording, signal-to-noise ratio, Teager energy operator, . . . . o
wavelet transform. techniques for action potential detection are within the realm
of possibility. The situation is similar to the problem of QRS
detection from an electrocardiogram (ECG), in that the goal is
to detect short transient waveforms in the presence of back-
HE extracellular recording of neural signals consists of aground noise, however, this requires less computational power
tion potentials from several neurons near the electrode sitiele to the lower sampling rate employed. Numerous studies
and background noise. Since information of the nervous systemthe development of the QRS detection algorithm have been
is encoded in the form of firing frequency or firing time [1], thereported during past several decades [2], [3].
first procedure in the interpretation of neuronal signals is the A considerable number of studies on the classification of
detection of the action potential firing, i.e., the neural spike. Imultiunit extracellular recordings can be found in the literature
spite of the fundamental importance of this, only a few studié4]—{7]. Most of these are concentrated on improvements in
on neural spike detection have appeared in the literature. In mg/gssifier performance. However, the action potential detec-
cases, major efforts have been made to optimize experimeli@§ is a preliminary step which can dominate the overall
so that the recorded waveforms are of sufficient quality to eRerformance of a neural spike sorting system. Bankman and
able reliable detection by simple traditional methods. Howevel@nselewitz [8] described a method for the elaborate determi-

situations are often encountered where the signal-to-noise ratfgion of threshold level: they determined it by analyzing the
probability density function (pdf) of the background noise,
i.e., by modeling the initial segment of the recording where
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techniques before applying thresholding, in order to boost the Il. EXPERIMENTAL METHODS
target signal while shrinking the background noise [10]. |
this procedurea priori knowledge of the characteristics o ) _ )
signal and noise are utilized. Another study by Bankrean A semiconductor microelectrode fabricated by the authors’

al. [4] reported that a prewhitening filter enhanced SNR b§roup [14] was used for recording from the somatosensory
assuming a complete knowledge of the spectral characteriiftex of Sprague-Dawley rats. Animals with body weights

of the background noise. Chandra and Optican [5] reported BAM 200-300 g were anaesthetized with urethane (1 g/kg, i.p.).
a neural-network-based action potential detection and classfiffér mounting the animals in a stereotaxic frame, a craniotomy
cation [5]; but this implies the availability of a training set wit{2—3 mm diameter) was performed over the primary somatosen-
a known class label, which is unrealistic in cases of frequenfi'y (SI) cortex using the bregma as the initial point of reference.
observable low SNR recordings. In real situations, especialjetailed methods pertaining to this surgery can be found in

when the SNR is very low, this quantitative information is ndil5]. The semiconductor microelectrode was inserted into the
available and can even be time-varying. forepaw area of the Sl with a micromanipulator. Stainless-steel

Recently wavelet-transform-based methods for neural spiWér e located in the subcutaneous region on the S'.de of .the cere-
detection have been reported. Oweiss and Anderson [ llum was used as a reference eIe_ctrone. Elgctrlcal stimulation
proposed an array signal processing technique for neural sp s prowded by a b|pole_1r concentric stimulating elgctrode and
detection that involves signal subspace estimation and thresh ?&ssted olf Sonophasg: tshquareh pU|S,?S (T)utlse vl\\//||d(tjh |Oi%33rgs’
denoising in the wavelet packet domain. They showed that t;ifquency Z) passe rough a stimulator (Mode k

method enables the generalized likelihood ratio test (GLR orld Precision Instruments) with an isolation unit to provide
~y 5 i i
without computing the noise-only covariance matrix. Thi§ hstant currenti) ~ 500 mA). The stimulating electrode was

method is effective when a multichannel electrode is use serted under the center of the receptive field and was fixed
Nakataniet al. [12] reported on a method for determining th Irmly to prevent any movement. The amplified and bandpass

scales to be considered and the threshold levels at each s gﬁgqred (300 HZtO.?’ kH.Z) 5‘9”?' is transferred to a digital stqrgge

for detection and waveform denoising. Their focus appearsqgcnloscopef_or_\_/lsu_allnspectlon andthentothe dataach|S|t|or_1
be on the latter, and they compared its performance only Wﬁx_stem for digitization and subsequ_ent storage anq _a_naly3|s
that of conventional wavelet denoising and showed that Hgmgapersonal computer. The sampling rate for the digitization

detection performance is not as good as that of conventiof4t> 20 ksampless, and the signal was subsequently resampled
wavelet denoising at 10 ksamples/s by a cascade of an antialiasing finite impulse

In this paper, we present a novel wavelet-based nonlind§pPonse (FIR) low-pass filter designed by the Kaiser window

method for the detection of action potential from single chann'g\ethooI [16] and decimation.
extracellular recording. We show its performance on Val‘iOIéS
experimental recordings where the SNR is low, and the simi-
larity between the characteristics of the target signal and backA Planar-type microelectrode array was used for recording
ground noise is also significant. These include data from tH@m the medial giant nerve of crayfish. The medial giant nerve
somatosensory cortex of the rat, the crayfish giant medigil@ bundle-structured set of motor axons and sensory axons
nerve, and the cutaneous nerve of the bullfrog. Differentffossing the body center, and can be easily laid down on the
from the method reported by Nakataetial. [12] based on the surface of the planar microelectrode. Details relating to the dis-
wavelet denoising, our method is derived from nonlinear coriéction can be found in [17]. The electrode site was made of
bination of multiple approximations of matched filters. Ougold, and the impedance of the electrode site was in the range of
method utilizes the point-wise product of wavelet transfor@00-800k(2 at 1 kHz. The evoked response to the mechanical
(WT) coefficients over several selected scales. The wavefétmulus applied to the tail-fin by probing lightly with a glass
basis function has a “spiky” waveform with a short time supprobe was recorded. The signal from the microelectrode array
port, and thus, a single subband of the wavelet decompositisas Preamplified by an ac coupled, fully differential amplifier
can be regarded as performing the function of the match@¥camp08, AC Instruments Corp.) having an input impedance
filtering, without a priori knowledge of the target signal andhigher than 1G€, further amplified, and bandpass filtered (300
noise. From classical detection theory, the matched filter (alohtf to 3 kHz).

with the prewhitening filter) is known to provide an optimal
linear method for signal enhancement under Gaussian nofse
[10]. However, this solution requires a precise knowledge of A hook-type stainless-steel electrode was used for recording
the target signal waveform and the spectral characteristicsfiafm the cutaneous nerve of the bullfrog responding to a me-
the noises. Unfortunately, in many cases, including ours, nocleanical stimulus given to the skin. The electrode impedance
of this information is easily obtainable, and the characteristiesas about 1&k2 at 1 kHz. After dissecting the backside skin
of the noise are even nonstationary. The performance of afithe bullfrog, a peripheral nerve bundle is hooked by the elec-
detection method was compared with those of the above inamde. The nerve bundle, containing the axons from the cuta-
plicable optimal linear method, and the Teager energy operat@ous mechanoreceptor, was identified by monitoring the re-
(TEO) [6], [13] which is a nonlinear method exploiting the insponse to the mechanical stimulus applied to the skin by probing
stantaneous rise in amplitude and frequency of the dominavith a glass micropipette. Low-pass filter with 10-kHz cutoff
frequency component. frequency was used along with 60-Hz notch filter.

. Recording From Rat Somatosensory Cortex

Recording From Crayfish Medial Giant Nerve

Recording From Bullfrog Cutaneous Nerve



KIM AND KIM: WAVELET-BASED METHOD FOR ACTION POTENTIAL DETECTION 1001

A unknown parametersl, 7, and a;, which denote amplitude,
ST P I arrival time, and scale, respectively. By GLRT [10], which uses
the maximum-likelihood estimates of unknown parameters,
Neyman—Pearson test statistic [10] is obtained as follows:

A1 (LE

: )

A / :p(1’|fl7&,%7H1)
> plo]Ho)

\ A/ exp <— fOT [:L‘(t) —A-s (%)]2&)

exp (— I [a:(t)]2dt)

H,

T ~ ~
~ t—T7 t—T7
=exp / <2:IJ(17)~A-S <T>—52<T>>dt > A1 (4)
Fig. 1. Transient signal characterized by amplitudeand scale. 0 « « ;
0

lIl. ACTION POTENTIAL DETECTION USING WAVELET By taking logarithms and simplifying, we obtain

COEFFICIENT COMBINATION T 1 {4
_ . Lz)= | a(t) — s — )dt
A. Detection Algorithm ! o A1/2 a
Consider following equation that defines WT: T 1 t—r @ R
= max / z(t) —75- s<—>dt A2(A, &, T).
o 1 (-7 R @) |5
— - 0
W(a,7) = /_wx(t)—amy} <—a ) dt @ )

where the real numbersandr denote scale and translation, reHere the right side of (5) indicates the dependency of the

spectively. As shown by (1), the WT essentially carries out a cqfreshold level on the amplitude, arrival time, and scale. Note
relation analysis between the input signaft() and the trans- that it is obvious from (5) that the amplitude does not affect
lated and dilated version of a reference signal called the motfigé test statistic, but only changes the threshold level and, thus,
wavelet ¢)(¢)) [18]. Hence, it would be expected that the outpuj |ack of knowledge oft is not relevant. From (1) and (5), we
would have local maxima where the input signal most closefan deduce that the wavelet analysis at the scale that yields
resembles the analysis template, i.e., the wavelet function. The maximum output is equivalent to the GLRT, provided that
wavelet basis functions have “spiky” (biphasic or triphasic angkact template waveform of the signal is used as the wavelet
so on) waveforms with compact support, and accordingly aggsis function, i.eap(t) = s(t). In fact, the derivation of (5) is
similar in shape to the action potential. In addition, the basigjuivalent to that of the matched filter as shown in [10], except
function is dilated over many scales. Thus, at some particufgk the assumption that the scaleis unknown. It becomes
scales, it can act as a number of effective approximations of {i@ar that wavelet analysis may provide a valuable practical
matched filter, even though the exact waveform of the target sigo| for the approximation of matched filtering, although
nals is not known. This can also be stated more formally as f@frere are several assumptions that cannot be satisfied in an
lows. Suppose the goal is to detect a transient sigi(@) that actual situation of neural signal recording. For example, the
can be characterized by amplitude arrival timer, and dura- wavelet basis)(t) cannot be exactly the same as the template
tion a, as shown in Fig. 1. The detection problem can be pos@@veform s(¢), and the background noise cannot always be
as a hypothesis testing as follows: assumed to be a Gaussian random process. Our purpose here
) B is to show that by performing wavelet decomposition over
Ho = x(t) =no(t) many scales and selecting some of those that yield faithful
Hy:xz(t) =A-so <t__T> + no(t). 2) representatior_l of t_he signal, itis possib!e to obtain a number of
o useful approximations of the matched filtering.

Heren(t) denotes the background noise and is assumed to be A'.herefore,.lt Is possible to mple_ment an effective action po-
colored Gaussian random process. Assuming that the spectfGhj @ detection scheme by combining the wavelet coefficients

of no(#) is known, the problem can be transformed into the orfd culated over a series of multiple scales. We use the point-wise

assuming a white Gaussian random process by applicatiorpé?duc'[ of f[he_wavelet coef_ﬁmerjts OVEr Some successive scales.
This exploitation of the point-wise product is intended to per-

rewhitening filter as follows:
P g form the role of logical AND” operation (although not pre-

Hy : z(t) =n(t) cisely) over multiple scales. Details of the procedure are as fol-
P lows. First, the wavelet coefficients and their absolute values
Hy:ax(t)=A-s < ) +n(t) (3) are calculated for 5 dyadic scales, i2:,~ 2°, and the scale

where the absolute value yields a maximum (this scale is called
where the noise(t) is now a white Gaussian random proces2/==x) is selected. Subsequently, as shown below in g);),
Here it is assumed that the target signal is known up tbe point-wise product of the wavelet coefficients over three
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Fig. 2. Block diagram of the proposed detection method (DWT product detector).
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Fig. 3. Modeling of the background noise of the crayfish medial giant nerve recording. Solid line: actual data. Dotted line: estimation byriter ffR-model.

consecutive scales up #3=«* is calculated for all time sam- applications of a bank of quadrature mirror filters and decima-

ples,n, as follows: tion by factor of two between them. A slightly more compli-
) cated version, which is called stationary or undecimated DWT
gy - (UDWT) and has the advantage of translation-invariance, can
P(n) = ’ H W (27, n)|. ()  be obtained by omitting the decimation [21]. We tested both the
J=imax—2 decimated DWT and UDWT, and the performances of detection

This is similar to an efficient edge detection technique us&¥ere similar for our data. However, the UDWT was chosen con-
in the field of image processing. Before the advent of wavelé'lder'”g its potgnnal be_:neﬂt in more exact waveform estimation.
theory, Rosenfeld and Thurson [19] devised an edge detectio?e coiflet basis function [22] was used for our system.
method employing the calculation of the point-wise product 1he DWT product”(n) is smoothed by convolution with the
of smoothed gradients, where the degree of smoothing taB&tlett window to mitigate maI|C|ous.effects of spurious peaks
dyadic values. More recently, Sadler and Swami [20] reportéi€ to cross terms, background noise, and slight mismatches
on a statistical analysis of Rosenfeld’s method. However, thd8ethe location of the signal peaks over different scales. The
studies provide no guidelines for the selection of the scales to'§dow length was determined empirically, taking all these ef-
used in product calculation, and it must be chosen carefully sof§StS into consideration and found to be suitable when itis about
to be suited for a specific desired application. We found that thé!f the duration of the target signal. The final output of the pro-
choice of three consecutive dyadic scales upite= is appro- posed action potential detect@i(n), is expressed as follows:
priate for most cases of action potential detection. The inclusion s
o_f excessively large or small scale_s considerably decreas_ed tlie(n) = w(n)*P(n) = w(n)* H |W(2]7n>| . (@
signal peaks because the correlation between the analysis tem-
plate (dilated wavelet basis) and the target signal (action poten-
tial) is decreased for those scales. The inclusion of too coarsgere w(n) denotes the Bartlett window. Block diagram de-
scale also decreased the signal peaks in the resulting wavefegfibing the DWT product method is shown in Fig. 2.
of P(n) because of the large mismatch in the location of the
peaks among different scales. B. Performance Test

The wavelet decomposition into dyadic scales can be com-Performance tests were carried out while varying the level of
puted by several means. It can be shown that a rapid comghe background noise, and the similarity between the signal and
tation is possible when the translation is limited to the integeoise. For this comprehensive test, a large amount of data sets
multiples of the scale [18], [21]. This yields a nonredundantepresenting real characteristics of various experimental neural
orthogonal representation and is usually called discrete waved&nal recordings were required. A time-series prediction tech-
transform (DWT). The DWT can be performed by successiveque was used for the modeling of experimental background

J=Jmax—2



KIM AND KIM: WAVELET-BASED METHOD FOR ACTION POTENTIAL DETECTION 1003

10¢
200 ; : . : : ; . : . ;f 103
150 ”c -
3
S 10 F 1 2
% 50 - G 10
§ Sl i) TR
= 50 I 108
> 400 - i ?,_- 101
150 |- —
g I g
0 50 100 150 200 250 300 350 400 450 500 100
Time (Samples)
10+ . . .
(a) 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency ¢12)
10° ,
150 : + : * : ¥ o
3
< 100 SHPID :
2| : ..
8 sof N B
o | (\/\/\th \ ]
o | &
> 0H / l N{/ 5
‘ W \N\/\‘N\/]\[\ V g 10|
_50 ! 1 1 1 1 1 &
0 100 200 300 400 500 600
Time (Samples) 101

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency Hz)

(©)

(d)

108

104

103

102°]

Voltage (uV)
& 3
8 o 8 8
—
1]
=
-
%L}
é
—J
Power spectral density (uV2/Hz)

0 100 200 300 400 500 600

Time (Samples)

10"

0 500 1000 1500 2000 2500 3000 3300 4000
(e) Frequency (z)

®

Fig. 4. Waveforms (left columns) and power spectra (right columns) of the three neural signals considered in this paper. (a) and (b): Rat sgrattsensor
recording. (c) and (d): Crayfish recording. (e) and (f): Bullfrog recording. The arrows indicate the position of action potential firing.

noise in order to construct this large data set. From the templatee moving average (ARMA) model [23], and time-delayed
waveform and the model of the noise, a test data set of arbitréegdforward neural network (TDNN) [24] were tried for the
SNR could be generated. Template waveforms were obtaimaddeling of the background noise as colored Gaussian noise.
by averaging distinct action potential waveforms from the e¥or our rat cortex and crayfish data, we were able to obtain
perimental recordings, using our detection method assisteddatisfactory results using the AR model as shown in Fig. 3.
visual inspection. Several linear and nonlinear time-series mdebr the bullfrog data, the ARMA was more appropriate for the
eling techniques such as the autoregressive (AR), autoregiesekground noise modeling, however, the AR model with a
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Fig. 5. lllustration of the rationale for the DWT detector. As denoted by the thick line, which is nearly vertical, the peaks in the wavelet traa#folentsadue
to the transients in input signal appear at nearly same time point over successive scales, while the peak due to the background noise (¢ i®pedragient
only on a single scale. “}" indicates the scales that are included in the detection. The arrow indicates the position of action potential firing.

high order was also acceptable. The order of the AR modeaislid and dotted lines in Fig. 4(b), (d), and (f) correspond to the
was determined using Akaike’s information criteria [23], bupower spectra of the action potentials and those of the back-
the order selection was not crucial to the performance of tjeound noises, respectively. The SNRs of the data shown in
time-series modeling, since satisfactory prediction was possilblig. 4 were about 2.16 for the rat cortex recording [Fig. 4(a)
for a large range of AR model orders. We used the fifth-ordand (b)], 2.15 for the crayfish recording [Fig. 4(c) and (d)], and
AR model for the rat cortex and crayfish data, and the fif2.13 for the bullfrog recording [Fig. 4(e) and (f)], respectively.
teenth-order model for the bullfrog data. Calculation of the ABignificant spectral overlap between the signal and background
model coefficient was performed by solving the Yule—Walkemoise is evident for all the recordings considered in this paper,
equation [23], or using the third-order spectra-based methadd this has been also shown by E¢al.[9]. The large amount
[25]. The SNR was defined as ratio of powers of target signaf spectral overlap makes the action potential detection problem
waveform and noise, as follows: more difficult. Fig. 5 shows the rationale for the DWT product
) ) detector. As denoted by the thick line in Fig. 5, the peaks in the
SNR— <peak—to-peak value of action potential WaVefjﬁ‘_ wavelet transform coefficients due to the transient in the input
root-mean-square value of pure noise segmgnt  signal appear at nearly the same time points over successive
scales, while the peak due to the background noise (denoted by
“\/") is prominent only on single scale.
A comprehensive performance test of the proposed detector,
Fig. 4 shows the waveforms (left columns) and power spectiad a comparison with the matched filter and the TEO are pre-
(right columns) for the three recordings. The arrows in Fig. 4(egented below. The threshold level for detection was determined
(c), and (e) indicate the position of action potential firing. Thby manual adjustment, based on data segments containing about

IV. RESULTS
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Fig. 6. (a) The input waveform of the recording from rat somatosensory cortex (upper panel), and the output waveforms when the input is applied to the DW
product detector (middle panel) and the TEO (lower panel) detector. (b) The input waveform of the crayfish recording (upper panel), and theefatma wav
when the input is applied to the DWT product detector (middle panel) and the TEO (lower panel) detector. The arrows indicate the position of @itdlon pote
firing.

20 action potentials while attempting to minimize the wrong irtest data set by Monte Carlo method [10], our goal was to de-
clusion of noise (i.e., false alarms) and detection misses. A stése and test a method that is generally applicable to common
tistical determination of the threshold level was not attemptexkperimental situations.

here because it requires a complete knowledge of the pdf [10]Fig. 6(a) shows the input waveform of the recording from
Although it was possible to obtain knowledge of the pdf for thithe somatosensory cortex of the rat, and the output waveforms
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Fig. 9. Left columns:P, versus SNR. Right columnd?:, versus SNR. Solid lines: DWT detector. Dotted lines: TEO detector. (a) Rat cortex recording.
(b) Crayfish recording. (c) Bullfrog recording.

when the input is applied to the DWT product detector armlso occurred in other situations, when recordings from the
the TEO detector. The upper panel shows the input waveforanayfish [Fig. 6(b)] and the bullfrog (not shown) were used as
and the SNR is about 2.52. The output from the TEO dé@yputs.

tector (bottom panel) has more distinct peaks than the outpufThe performance of the proposed method was compared with
from the DWT detector (middle panel) at points where thiéose of the TEO, the prewhitening filter, and the matched filter
action potentials fire. However, the TEO detector appears with preceding prewhitening filter [10]. Fig. 7 shows the lim-
produce a larger amount of spurious peaks. This phenomeriial efficacy of the prewhitening filter for the action potential
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detection. The prewhitening filter was helpful only for the cray(a) 1.0 T LB T !

fish data. In the case of the rat cortex data shown in Fig. 7 a 0.9 ”c) ."ﬁkr;ﬂ"“ i

the bullfrog data (not shown), signal qualities were somewh /

deteriorated. Fig. 8 shows a comparison of the signal qual 08r AT . )

after processing by the matched filter with prewhitening, wit o7b M A A i

our detectors. Itis not possible to judge whether this linearly o - ‘/

timal method is superior or inferior to our detector from Fig. ! a’ 0.6 A ]

alone. Later we will show a more detailed comparison of di 05} - T —&— DWT product | -

tection performance by receiver operating characteristic [1 r / R —0—TEO

In order to investigate detection performances more thorougt 04r = D/ - Matched filter | |

we plotted the probability of detectio®f) and the probability 0.3} -

of false alarm P, ) at various levels of SNR. Fig. 9(a) shows 00 01 02 03 04 05 06 07 08

the results for the rat recordings. The solid and dotted lines

Fig. 9 correspond to the DWT and the TEO detectors, respt PFA

tively. The test was performed using data that included 1,000

tion potentials. In Fig. 9(a) the level é#, is intentionally con- (b) N — . r . .

trolled to be similar for the two detection methods, by adjustir nE. . o0 A

the threshold level. For simildPgs, the DWT product detector 0.9+ /-/ _— ‘/ ]

yielded a higheP than the TEO detector, for all SNR levels. 0.8 J-' “A% A-A ]

Fig. 9(b) shows the result for the crayfish recording, where v 0.7} [ ’ I 7

attempted to hold the value &%, to a similar level. Here, lower o 06r ‘ /B .

Ppa (i.e., better performance) could be obtained by the DW o o05f g -

product detector. This improved performance of the DWT di 041} ' dpﬂ i

tector was more profound for the case of the bullfrog recordir 03l I —=&— DWT product | ]

shown in Fig. 9(c). o2l T;\rﬂiﬁzhed dter | -
A comparison of the detection performance by means of t o1l . ]

receiver operating characteristic (ROC) is presented. The R(
curve was obtained by plottinffp as a function ofPga [10].
Each data point in a curve corresponds to each differe FA
threshold value. Fig. 10(a)—(c) shows the results for the 1

cortex data, crayfish data, and bullfrog data, respectively. .

00 01 02 03 . 04 05 06 07

Fig. 10(a), the TEO and DWT product detector shows simil: (€) 1or . __—og ]
level of P, when a high level ofPry, was allowed, but the 09r i s """“"‘;32] ]
latter shows a superior performance for a low levellf, . 08r A,gﬂ“‘/- """ ot ]
Both were superior to the matched filter with prewhitening. Fc 07F A g :/ ]
the crayfish data [Fig. 10(b)], the difference in performanc o 06 i/ g/ ]
between the two detectors was larger. The performance of 0 o5p 4 / ]
TEO detector was slightly inferior compared to the matche 04} Tff / —a— DWT product | 1]
filter for a low Pra. The DWT product detector showed 03} ‘- D/ —0—TEO 1
consistently higher performance than that of the matched filt: 02} : A Matched fiiter | ]
For the bullfrog data, as shown in Fig. 10(c), both were not : 01+t . . . ' . . ]
good as the optimal linear method, however, the performar of1 ' 02 03 ' 0.4 ' 05 ' 0.6 ' 07 08
of the DWT product detector was comparable. In summai P

the proposed detector showed high performance, superior or FA

comparable to that of the matched filter with prewhiteningsig. 10. Comparison of detection performance by the ROC curve. (a) Rat
which is unrealizable. cortex data (SNR 2.33) (b) Crayfish data (SNR 2.38) (c) Bullfrog data
Finally the application of the proposed detector to an actgNre 1:91)
experimental recording from the rat somatosensory cortex is
presented. Fig. 11(a) and (b) shows a collection of the wauke scatter plot in Fig. 11(d) that the detected waveforms in
forms detected by the proposed method and a scatter plot offitg. 11(c) include numerous false alarms, since there is a noise
principal components, respectively. Two clusters are distinct@fuster here in-between the two clusters that are also present in
the scatter plot in Fig. 11(b). This is also clear from Fig. 11(ajig. 11(a). When we increased the threshold level to remove
where waveforms from two units are present. It contains 21ese false alarms, many correct action potentials were also
detections. However, in Fig. 11(c) where conventional ampliemoved and a considerable number of noise segments still re-
tude thresholding was used to detect action potentials, itrgined. This is shown in Fig. 11(e) and (f). Here again, 210
not apparent whether two units are present in the detectetections were included, but a large portion of these is from
waveforms. It contains 566 detections. We can deduce frdhe false inclusion of noise.



KIM AND KIM: WAVELET-BASED METHOD FOR ACTION POTENTIAL DETECTION 1009

0.8 .
x
06} Boas™ « x
%
a X
R
xX
0.2 x &"2 % x
0 x‘x :( ; X : XX
x"x x
0.2 .
& x XX x
0.4 .
06
08 x
x
A

@ | (b)

1 12 14
© )
0.8 . - .
x .
0.6-’;"‘;* x
x X X ’;
0.4} HHX X
x ;SS&‘: x* x X
0.2 x:ﬁ*k: * x
)(x X x
ot } x x
% 2
0.2} G x
0.4} " x
0.6} x
0.8}
x
0 02 04 06 08 1 12 14

© ®

Fig. 11. (a) Collection of the waveforms detected by the proposed detector. (b) Scatter plot of the first two principal components extractechfeositvend
in (a). (c) Collection of the waveforms detected by amplitude thresholding. (d) Scatter plot of the first two principal components extractediftansitiosvn
in (c). (e) Collection of the waveforms detected by amplitude thresholding when a higher threshold level was used in order to remove the faisef incissio
segments. (f) Scatter plot of the first two principal components extracted from the data shown in (e).

V. DiscussION ANDCONCLUSION al. [4] or that of Gozani and Miller [7], a complete knowledge

The detection method proposed in this paper does not requféhe background noise and the action potential waveforms of
“quantitative” a priori information on either the target signal@ll the units present in the recording is required. Neural-net-
and background noise, and only involves “qualitative” informavork-based action potential detection [5] necessitates a training
tion that is common to the neural signal recordings. This is al§6t With known class label, and this requirement is equivalent
valid for the previously described TEO detector [6], where w@ & complete quantitative knowledge of the target signal and
simply made use of the fact that the instantaneous frequet§/se.
and amplitude of the dominant frequency component increaseé\mong the two methods proposed by the authors, the cur-
when the action potential fires. This is a clear advantage ovent method, the DWT product detector, shows superior perfor-
several previously proposed action potential detection methodgnce for all the recordings considered to date. From the view-
such as [7] and [5]. In order to use the method of Banketan point of computational requirements, the TEO required about
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ten times less number of floating point operations and, thus,dacket decomposition might be applied in order to broaden the
better suited to real-time implementation. However, when inextent of subbands to be included for the detection. An ap-
plemented on a Pentium Il PC with 500-MHz clock speed, th@ropriate criterion should be devised to guide in the selection
difference in execution time was not great (1.02 times fastef scales. A novel technique other than the point-wise product
than the wavlet method fdro® data points processing). Someshould be developed to combine the information from the se-
methods that are similar to our wavelet-based action potentiatted subbands to achive an improved detection performance.
detector have been proposed for QRS detection from ECG sigin conclusion, an action potential detector using the
nals [2], [3], [28]. Studies by Kadamlet al.[2] and Li et al. point-wise product of wavelet coefficients of multiple scales
[28] involve searching for all the local maxima of the absolutis presented. The method involves multiple approximations
value of the wavelet coefficients within the analysis windowf matched filters and nonlinear combination thereof. The
over some successive scales and, therefore, can be time-groposed method was tested for various SNRs and degrees of
suming. This becomes much more problematic in case of newspkctral similarity between the signal and background noise.
signal processing where the sampling rate is about 100 tiniHse detection performance achived was better than that of the
higher than the case of ECG processing. Moreover, QRS det&&O [6] and even comparable or superior to that of the optimal
tion seems to be a much easier problem than the action potkémear detector. Since the proposed action potential detector
tial detection from extracellular neural signal recordings, wittloes not require a quantitative knowledge of the signal and
respect to both the SNR and the similarity between the sigmadise of the recording under investigation, it can be utilized for
and background noise. the online or first offline analysis of neural signal recordings,
Several wavelet-based methods for neural signal analysisere such quantitative information is not readily available.
have been reported [11], [12], [26], [29]. Hulat&d al. [29]
proposed an application of wavelet packet decomposition for
neural spike detection and sorting, although emphasis was
given to the latter. Their method does not appear to be approil] F- Rieke, D. Warland, R. De Ruyter van Steveninck, and W. Bialek,
priate for a fully automated system, since it requires the initial fgg%e_s' Exploring the Neural CodeCambridge, MA: MIT Press,
manual grouping of signals into several neural spikes and noisg] s. Kadambe, R. Murray, and G. F. Boudreaux-Bartels, “Wavelet trans-
to find the basis. An action potential detection method utilizing forrrgggsgg 7Q?j ccirggéex detectdEEE Trans. Biomed. Engvol. 46,
\r,‘qu\:ﬁtl)ec} Idsek?aoslzlg?)r\llvt?lse ?;?ﬁgjaeldosz_lgszi}fmal [12]. ThIS . ﬁ3] gpu Kohler,’C. I¥Iennig, and R. Orglmeister, “The principles of soft-
ground noise whic ware QRS detection[EEE Eng. Med. Biol. Mag.vol. 21, pp. 42-57,
is effective when it shows white spectrum. Their performance  Jan.-Feb. 2002.
test was demonstrated for cases where the background noidél !- N. Bankman, K. O. Johnson, and W. Schneider, “Optimal detection,
was a Gaussian random process that was lowpass-filtered to ﬂgzs'fl'éaég '}r:r?g o Sg'r?g)fggﬂgzl'? :jglrilgggf'eform record-
the cutoff frequency of 4 kHz, and the action potential was [5] R.Chandraand L. M. Optican, “Detection, classification, and superposi-
bandlimited to 100 Hz to the 2 kHz. Hence, background noise  tion resolution of action potentials in multiunit single channel recordings
can be treated as a white Gaussian process if the sampling rate Y anon-line real-time neural networkEE Trans. Biomed. Engvol.
) L . ; 44, pp. 403-412, May 1997.
is changed to 4 kHz (which is feasible from the Nyquist the- 1o; « "W kim and S. J. Kim, “Neural spike sorting under nearly 0 dB
orem) and, thus, this is similar to the problem of band-limited signal-to-noise ratio using nonlinear energy operator and artificial neural
signal detection under white Gaussian noise, where the wavelet gettvvg[)koglassifier,’lEEE Trans. Biomed. Engvol. 47, pp. 1406-1411,
den0|5|ng is effective. Their met_hOd may be less effective in 7] S.Cl\i.Gozz;miand J. P. Miller, “Optimal discrimination and classification
cases where the background noise shows a spectral character- of neuronal action potential waveforms from multiunit, multichannel
istic similar to that of the action potential, and the benefit of recordings using software-based linear filteriSEE Trans. Biomed.

their method is mainly on accurate waveform estimation by _ Eng. vol. 41, pp. 358-372, Apr. 1994.
noise removal [8] I. N. Bankman and S. J. Janselewitz, “Neural waveform detector for

. . . prosthesis control,Proc. 17th Ann. Conf. IEEE EMB®p. 963-964,
Oweiss and Anderson [11], [26] described a series of  1995.

array signal processing techniques for neural spike detectior9] M. S. Fee, P. P. Mitra, and D. Kleinfeld, “Variability of extracellular

and sorting. They exploited signal subspace estimation and SPike waveforms of cortical neuronsJ. Neurophysiol. vol. 76, pp.

s - . . 3823-3833, 1996.
threshold den0|S|ng in the wavelet packet domain. The“[lO] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2:

methods yield high performance under low SNR, and seem t0  Detection Theory Englewood Cliffs, NJ: Prentice-Hall, 1998.
provide efficient solutions when a multichannel electrode arraylll K. Oweiss and D. J. Anderson, “A multiresolution generalized max-
is employed and the activities of all the units under consid- :&‘:2:]r']'(';Ie'S'T;r?;saﬁ]pé‘(’)?(fg;o;é?:edﬁfgcﬂzﬂnogxg"Cr;?/g:;;ig?;%‘ém”'
eration are recorded by all the channels under investigation. casspvol. 3, 2002, pp. 2993-2996.

Another multichannel technique, blind source separation using2] H. Nakatani, T. Watanabe, and N. Hoshiyama, “Detection of nerve ac-
independent componenet analysis, has been applied to the tion potentials under low signal-to-noise ratio conditiolEEE Trans.

. . . Biomed. Eng.vol. 48, pp. 845-849, Aug. 2001.
problem of neural Sp'ke sorting [27]’ but its performance undele] P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and frequency

low SNR has not been presented. demodulation using energy operato§EE Trans. Signal Processing
The possibility exists for improving the performance of the vol. 41, pp. 1532-1550, Apr. 1993.
; ; Yo 4] T. H. Yoon, E. J. Hwang, D. Y. Shin, S. I. Park, S. J. Oh, S. C. Jung,
proposed.det.ector by applymg So.r.ne §|Ight delflcatIQns' FOP H. C. Shin, and S. J. Kim, “A micromachined silicon depth probe for
example, it might be possible to utilize information provided by multichannel neural recordinglEEE Trans. Biomed. Engvol. 47, pp.

incorporating a more elaborate selection of subbands. Wavelet 1082-1087, Aug. 2000.
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