Comparison of Detection Rate of *Prevotella intermedia* and *Prevotella nigrescens* in Subgingival Plaque from Korean Periodontitis Patients

Mi-Kwang Kim, Jin-Hyo Seong, Dong-Kie Kim, Young Nam Son, Jang Jae Lee, Yong-Kook Shin, Heung-Joong Kim, Joo-Cheol Park, Hyun-Seon Jang, Byung-Ock Kim, and Joong-Ki Kook

Departments of Oral Biochemistry, Preventive and Public Health Dentistry, Oral Anatomy, Oral Histology, and Periodontology, College of Dentistry, and Department of Computer Science and Statistics, College of Natural Sciences, Chosun University, Division of Genome Resources Bank and Reservation, National Genome Research Institute, National Institute of Health

색인: Detection rate, periodontitis, *Prevotella intermedia*, *Prevotella nigrescens*

1. Introduction

Periodontitis refers to a group of diseases that cause inflammation and a loss of the supporting structures of the teeth*. The major cause of periodontitis is dental plaque, and the putative pathogens known to be involved in destructive periodontal diseases include *Actinobacillus actinomycetemcomitans*, *Tannerella forsythensis* (Bacteroides forsythus), *Campylobacter rectus*, *Eikenella corrodens*, *Fusobacterium nucleatum*, *Porphyromonas gingivalis*, *Prevotella intermedia*, and spirochetes*.

The human oral cavity harbors a wide variety of moderately saccharolytic species from the bacterial genus *Prevotella*, some of which have clinical significance. The two most prevalent species of the group are *Prevotella intermedia* and *Prevotella nigrescens*. Formerly considered a single species, they were first separated 10 years ago*-* after multiple DNA homology studies*, serological experiments*, isoenzyme screenings*, and whole-protein analyses* provided evidence for at least two distinct subgroups. Several studies have

* Address: Dr. Joong-Ki Kook, Dept. of Oral Biochemistry, College of Dentistry, Chosun University, 375 Seosuk-Dong, Dong-Gu, Gwangju, 501-759, Korea, Phone: (062) 230-6877 Fax: (062) 224-3706 e-mail: jkkook@chosun.ac.kr
This study was supported by a grant of Ministry of Health & Welfare, Republic of Korea (03-PJ1-PG1-CH08-0001).
reported significant differences in the prevalence and/or abundance of the two species in samples collected from various oral sites. It is believed that *P. intermedia* is associated with the periodontal disease sites while *P. nigrescens* has been isolated from healthy sites within the mouth as well as endodontic infection sites\(^9\) and oral abscesses\(^10\). However, some studies have reported contradictory results regarding the occurrence of *Prevotella* in the oral cavity\(^11,12\). There is little data regarding the prevalence of both *P. intermedia* and *P. nigrescens* in the subgingival plaque from healthy tissue, gingivitis, or periodontitis lesions in Korean patients. The aim of this study was to examine the detection rate of both *P. intermedia* and *P. nigrescens* in subgingival plaque samples from Korean periodontitis patients using a polymerase chain reaction with species-specific primers designed from the 16S-rDNA nucleotide sequence.

2. Materials and Methods

2.1. Subjects and Subgingival Plaque Sample

All patients who had undergone a previous periodontal treatment and who had not received antibiotics over the previous 6 months before treatment were selected. The following parameters were measured at 6 sites on each tooth: the plaque index (PI)\(^13\), the gingival index (GI), bleeding on probing (BOP), the probing depth (PD), and the attachment level (AL). The sites were divided into 3 groups according to the PD: 1) a shallow PD (sPD): ≤3 mm, 2) a moderate PD (mPD): 4-5 mm, 3) a deep PD (dPD): ≥6 mm.

After removing the supragingival plaque with a sterile curette, subgingival plaque samples were taken from 4 healthy sites, 103 gingivitis sites, and 26 periodontitis sites from 34 patients, who visited the Department of Preventive Dentistry, Dental Hospital, Chosun University, by inserting 3 sterile paper points in the periodontal pockets for approximately 30 seconds. The paper points were placed immediately in 0.5 ml of 1X PBS. All the samples were immediately frozen at -20°C.

2.2. DNA extraction from the plaque samples

The bacterial DNAs from the plaque samples were extracted using the direct DNA extraction method described by Lee *et al*.\(^14\). A 50 μl aliquot of a plaque sample was mixed with 50 μl of a 2X lysis buffer (2 mM EDTA-1% Triton X-100), and the mixture was then boiled for 10 min. After centrifugation to remove the cell debris for 20 s at 1,3000 × g at room temperature, the supernatant was collected and used as a template for amplification using a polymerase chain reaction (PCR).

The reference DNAs from the *P. intermedia* ATCC 25611 and *P. nigrescens* ATCC were extracted using a modification of the method reported by Lippke *et al*.\(^15\). Briefly, the cell pellets were resuspended by vortexing in 5 volumes of a cell lysis buffer ISM guanidine isothiocyanate, 50 mM Tris-HCl (pH 7.6), 10 mM EDTA, 2% S-lauryl sarcosinate, 140 mM 2-mercaptoethanol. The bacterial genomic DNAs were purified using the phenol/chloroform extraction method instead of the cesium chloride method\(^16\). The DNA concentrations were determined by UV-
spectrophotometry (Ultrospec 2000, Pharmacia Biotech, Cambridge, UK) at wavelengths of 260 and 280 nm. The results served as the positive control for the primers used herein.

2.3. PCR amplification

Either the *P. intermedia* or *P. nigrescens*-specific PCR primers was selected from the publications previously described\(^{17}\) and obtained from BIONEER Corp (Daejeon, Korea). The PCR was performed using an AccuPower™ PCR PreMix (BIONEER Corp.), which contained 5 nM of each deoxynucleoside triphosphate, 0.8 mM KCl, 0.2 mM Tris-HCl (pH 9.0), 0.03 mM MgCl₂, and 1 unit of TaqDNA polymerase. The bacterial genomic DNA and 20 pM of each primer were added to a PCR PreMix tube. The PCR was carried out in a final volume of 20 μl. The PCR was run for 32 cycles on a Peltier thermal cycler (Model PTC-200 DNA engineTM, MJ Research Inc., Watertown, MA, U.S.A) under the following conditions: denaturation at 94°C for 1 min, primer annealing at 60°C for 30 sec, and extension at 72°C for 1 min. The final cycle included an additional extension time of 10 min at 72°C. A 2 μl aliquot of the reaction mixture was analyzed by 1.5% agarose gel electrophoresis in a Tris-acetate buffer (0.04 M Tris-acetate, 0.001 M EDTA, pH 8.0) at 100V for 30 min. The amplification products were stained with ethidium bromide and visualized by UV transillumination.

2.4. Data analysis

The detection frequencies are presented as the mean percentage of the sites testing positive for *P. intermedia* and *P. nigrescens*. The percentages of the shallow, moderate, and deep sites testing positive were compared for the two bacteria using a chi-square test (P < 0.05).

3. Results

The detection frequency of *P. intermedia* was higher than that of *P. nigrescens* in all groups (Table 1). The detection rate of *P. intermedia* was higher in the mPD sites than in the dPD sites. However, the level of *P. nigrescens* in the mPD sites was similar to that of *P. nigrescens* in the dPD sites. This study could not compare the detection frequencies of the two bacteria in the sPD and mPD or dPD sites because the sample size of the sPD sites was too small.

There was a higher level of *P. intermedia* in the BOP sites in all groups than *P. nigrescens* (Table 2).

4. Discussion

The results obtained in this study showed that *P. intermedia* was more associated with BOP than *P. nigrescens*. It was reported that the hemolytic activity of the *P. intermedia* isolates was significantly higher than those of the *P. nigrescens* isolates\(^{18}\). The high hemolytic activity of *P. intermedia* may be involved in the pathogenicity of *P. intermedia* in the progression of periodontal disease. *P. intermedia* and *P. nigrescens* require iron for growth. Hemoglobin or hemin resulting from the hemolytic degradation of red blood cells might be a major source of exogenous iron for
Table 1. Number of sites positive for *P. intermedia* and *P. nigrescens* of subgingival plaques according to pocket depth(%)

<table>
<thead>
<tr>
<th>PD<sup>1</sup></th>
<th>Number of Positive Sites (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤3</td>
<td>4-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOP<sup>2</sup></td>
<td>(-)</td>
<td>(+)</td>
<td>subtotal</td>
<td>(-)</td>
<td>(+)</td>
<td>subtotal</td>
</tr>
<tr>
<td>n = 4</td>
<td>n = 15</td>
<td>n = 19</td>
<td>n = 15</td>
<td>n = 103</td>
<td>n = 118</td>
<td>n = 4</td>
</tr>
<tr>
<td>P<sup>3</sup></td>
<td>0 (0.0)</td>
<td>5 (33.3)</td>
<td>5 (26.3)*</td>
<td>7 (46.7)</td>
<td>66 (64.1)</td>
<td>73 (61.9)*</td>
</tr>
<tr>
<td>Pn<sup>4</sup></td>
<td>1 (25.0)</td>
<td>0 (0.0)</td>
<td>1 (5.3)</td>
<td>3 (20.0)</td>
<td>22 (21.4)</td>
<td>25 (21.2)</td>
</tr>
</tbody>
</table>

¹Pocket depth (mm); ²Bleeding on probing; ³Prevotella intermedia; ⁴Prevotella nigrescens

Significantly different (P < 0.05)

Table 2. Number of sites positive for *P. intermedia* and *P. nigrescens* of subgingival plaques according to bleeding on probing(%)

<table>
<thead>
<tr>
<th>BOP<sup>1</sup></th>
<th>Number of Positive Sites (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-)</td>
<td>(+)</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 23</td>
<td>n = 144</td>
<td>n = 167</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<sup>2</sup></td>
<td>10 (43.5)</td>
<td>81 (56.3)*</td>
<td>91 (54.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pn<sup>3</sup></td>
<td>5 (21.7)</td>
<td>28 (19.4)*</td>
<td>33 (19.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Bleeding on probing; ²Prevotella intermedia; ³Prevotella nigrescens

Significantly different (P < 0.05)

the growth of *P. intermedia*¹⁹. These results suggest that *P. intermedia* may play a significant role in the pathogenesis of periodontal disease via its hemolytic activity.

The data showed that there was a higher level of *P. intermedia* in the mPD and dPD sites than *P. nigrescens*. This indicates that *P. intermedia* is more associated with the progression of periodontal disease than *P. nigrescens*. This study is a preliminary investigation into the difference in the detection rate of *P. intermedia* and *P. nigrescens* in periodontitis lesions in Korean patients. Several investigations have reported significant differences in the prevalence and/or abundance of the two species in samples collected from healthy and diseased sites. Therefore, more studies will be needed to confirm these results.

Many bacterial identification methods have been developed to explore the relationship between infectious diseases and their associated causative agents. Among them, some of nucleic acid-based methods, for example, DNA-DNA hybridization, DNA fingerprinting, DNA probes, 16S or 23S rRNA gene sequencing, and PCR²⁰. PCR methods utilizing the 16S rRNA as a target have many advantages^{1,21}. Recently, a real-time PCR method was introduced and has been used in epidemiological studies on periodontitis^{22,23}. This method has sufficient sensitivity, and specificity and is a powerful tool for microbiological examinations of periodontal disease. However, it is expensive. Therefore, this study used a conventional PCR method.
5. Conclusion

This study examined the detection rate of both P. intermedia and P. nigrescens in subgingival plaque samples from Korean periodontitis patients using a conventional PCR method. P. intermedia is more associated with the BOP sites than P. nigrescens. In addition, there was a higher level of P. intermedia in the moderate (4-5 mm) pocket depth and the deep (≥6 mm) pocket depth sites than P. nigrescens. Overall, there was a higher level of P. intermedia in the BOP positive sites in Korean periodontal disease patients than P. nigrescens. P. intermedia may play a more important role in the pathogenesis of periodontal disease than P. nigrescens.

Reference

18. Okamoto M, Mueda N, Konno K, Leung KP. Hemolytic and hemagglutinating activities of Prevotella intermedia and
한국인의 치주질환 환자의 치온연하치면세균막에서

Prevotella intermedia와 Prevotella nigrescens의

감출율 비교

김미광, 성진호, 김동기, 손영남, 이장제, 김홍중, 박주철, 장현선, 김병욱, 신용국, 국중기*

조선대학교 치과대학 구강생화학과, 예방치과학교실, 구강체육학교실, 구강조직학교실, 치주과학학교실, 자연과학대학 전산통계학과, 국립보건원 유전자관리실

색인: Detection rate, periodontitis, Prevotella intermedia, Prevotella nigrescens

본 연구의 목적은 한국인의 치주질환 환자의 치온연하치면세균막에서 Prevotella intermedia와 Prevotella nigrescens의 감출율을 비교하기 위하여 시행하였다. 34명의 환자로부터 총 133개의 치온연하치면세균막을 별균된 paper point를 이용하여 채취하였으며, 이때 긴장한 치주조직이 4개, 치온염을 보이는 치주부위가 103개, 치주염을 보이는 부위가 26개였다. 16S 라이보스 RNA의 염기서열을 바탕으로 제작된 종특이 프라이머를 이용한 중합효소연쇄반응법으로 P. intermedia와 P. nigrescens를 치면세균막으로부터 존재유무를 확인하였다. 실험 결과 P. intermedia는 P. nigrescens보다 탐침시 혈관을 보이는 환자에서 감출율이 더 큰 것으로 조사되었다. 또한 P. intermedia는 치주건강이 4 mm 이상의 부위에서 P. nigrescens보다 상대적으로 높게 감출되었다. 이러한 결과는 P. intermedia가 P. nigrescens보다 치주질환의 진행에 더 연관성이 높다는 것을 간접적으로 시사한다.