효율적 HDSL 송신신호를 위한 중간응답 줄임 기법

조남정°, 이용환
서울대학교, 전기컴퓨터공학부

Impulse Response Shortening for HDSL Transceiver
Nam-Jung Cho* and Yong-Hwan LEE
School of Electrical Engineering and Computer Science, Seoul National University
e-mail: ylee@snu.ac.kr

요약
HDSL 송신신호 환경과 같이 다양한 선로와 브릿지 링크가 존재하는 채널에서는 왜곡된 신호를 효율적으로 보상하기 위하여 비선형 중간응답형 전송형 효과를 사용한다. 그러나 결정 계급 중간응답형 전송형 효과는 채널의 중간응답의 길이가 길 경우에 효율적으로 ISI 성분을 제거하기 위하여 많은 수의 역방향 필터 텐트가 필요하며, 이로 인해 계산량의 증가와 오류 전파의 문제점을 갖게 된다. 본 논문에서는 왜곡된 신호를 최소화하기 위한 방법으로서, 채널의 중간응답의 길이를 효율적으로 줄이고, 오류 전파 중간응답의 중간응답의 정도를 동등하게 손실을 최소화하는 필터 설계 기법을 제시한다. 또한 이를 송신신호기의 초기 접속과정 단계에서 실시간으로 구현하기 위한 기법을 제시하여 HDSL 송신신호를 효율적으로 구현할 수 있도록 보인다.

1. 서론
HDSL(High-bit-rate Digital Subscriber Line)은 기업과 전화선을 통해, T1 또는 E1급 신호를 전송하여 일반전화 신호의 사용효율을 극대화 할 수 있는 디지털 통신 기법이다[1]. 이 송신신호는 장거리 정확 전화 회신을 이용하고, 브릿지 링크(Bridge Tap)가 선로상에 다수 존재하여 채널에 의한 신호 왜곡이 심함으로, 왜곡된 신호를 효율적으로 보상하기 위하여 수방향 필터(Feedforward Filter)와 역방향 필터(Feedback Filter)로 구성된 결정 계급 중간응답형(DFE: Decision Feedback Equalizer)가 사용된다[2]. 그러나, HDSL은 채널의 중간응답 길이의 크므로, 이로 인한 결정 계급 중간응답형 필터의 수가 증가하여 연산량이 증가하고, 중간응답의 수렴과정에서 이전에 판별된 값이 오류가 발생할 경우, 역방향 필터의 필터의 수에 비하여 오류가 전파되는 문제점을 가지게 된다. 따라서 채널의 중간응답의 길이를 줄임으로써, 위 문제점을 해소할 수 있는 기법이 요구된다. 그림 1은 결정 계급 중간응답형의 구조를 나타낸다.

위와 같이 채널의 중간응답의 길이를 줄이는 기법은 DMT(Discrete Multi-Tone) 송신신호에서 원활한 데이터 송신을 위해 필요로 하는 CP(Cyclic Prefix)의 길이를 감소하기 위하여 적용될 수 있다[3][4]. 그러나, 위 기법을 HDSL 송신신호 환경에 적용하여, 결정 계급 중간응답형의 필터를 줄이기 위한 알고리듬을 사용할 경우, 대역 의에서의 심각한 잡음전력 중간응답의 문제를 해결하기 위하여 이와 같은 대역 의에서의 잡음전력 중간응답을 최소화하기 위한 기법이 요구된다. 따라서 본 논문에서는 채널의 중간응답의 길이를 줄이는 동에, 이로 인한 잡음전력 중간응답을 최소화하기 위한 설계기법을 고려한다.

2. 장에서는 DMT 송신신호 환경에서 제안되었던 중
간응답 줄임기법 알고리듬[3] HDSL, 송신신호 환경에 적용함 때 발생하는 잡음전력 중간응답형 문제를 심화하고, 이에 따른 알고리듬의 효율성을 증가에 능가함으로서 잡음전력 중간응답형을 최소화하는 기법을 제시한다. 3 장에서는 장이의 중간응답을 줄이기 위한 알고리듬을 제안할 수 있도록 장
간응답을 수립하기 위한 기법을 제시한다. 마지막으로 4 장에서는 장이 알고리듬을 요약하고 결
론을 끝낸다.

2. 중간응답 줄임 기법
DMT 송신신호에서는 채널의 중간응답이 길어짐에 따라 증가되는 CP의 수를 최소화하여 용량의 높이는
터의 정보 전송률을 향상시키는 목적으로, 수신단에서 증폭응답 줄임필터(SIRF: Shortening Impulse Response Filter)를 사용하여 전체 채널의 증폭응답을 줄이고, 이를 통하여 필요한 CP의 수를 최소화 한다.

예로서, Melsa의 알고리듬은\(^3\) 절이 \(M\)의 채널 증폭응답 \(h\)를 \(k\)의 패턴을 가지는 증폭응답 줄임필터 \(w\)를 이용하여 채널응답의 길이가 \(N\)이 되도록 줄인다. SIRF를 통한 채널응답 \(h_{\text{eff}}(n)\)는
\[
h_{\text{eff}} = h * w = Hw
\]
과 같이 \(h\)와 \(w\)의 결합연산으로 표현된다. 이때 \(h_{\text{eff}}(n)\)에 대하여 길이 \(N\)만큼의 원도우를 섞어서, 원도우 내부의 \(h_{\text{eff}}(n)\)의 값으로 본질을 하며, 원도우 내부의 채널응답으로 이루어진 상관행렬과 원도우 외부의 채널응답으로 이루어진 상관행렬을 각각 행렬 \(A\), 행렬 \(B\)라고 정의하면,
\[
A = E[H'H]
\]
\[
B = E[H'H]
\]
로 표현된다. 행렬 \(A\)를 Cholesky 분해 하며,
\[
A = QAQ^T = (Q\sqrt{\Lambda}) (Q\sqrt{\Lambda})^T = N\sqrt{\Lambda} \Lambda^{-1}
\]
와 같이 표현되며, 여기서 \(\Lambda\)는 하부 삼각형 행렬(lower triangular matrix)이다. 복합행렬 \(C\)를
\[
C = \sqrt{\Lambda} \Lambda^{-1} A
\]
와 같이 정의하면, 결국 SIRF의 계수는 원도우 내부와 원도우 외부의 에너지 격차를 최대로 만드는 해이며,
\[
w_{\text{wv}} = (\sqrt{\Lambda} \Lambda^{-1}) v_{\text{min}}
\]
와 같이 주어진다. 이때, \(v_{\text{min}}\)은 행렬 \(C\)의 최소 고유값에 해당하는 고유벡터이다.

위 알고리듬은 실제 송수신 환경에 적용하기 위해서는 주어진 채널의 채널응답을 이용하여 위해를 구해야 한다. 그림 2는 ANSI(American National Standard Institution)에서 권장하는 CSA(Carrier Serving Area) 시험 선로를 모델링하여 얻은 채널의 주파수 응답과 채널응답을 나타낸다. 이 경우, precursor-CSI와 postcursor-CSI를 제거하기 위해서는 스태비한 필터는 10배 내외, 역방향 필터는 50배 이상 요구된다. 그림 3은 HDSL의 CSA 시험 선로중 선로 1번에 대해서 기존의 Melsa 알고리듬으로 설계한 SIRF의 주파수 응답특성을 SIRF를 통과한 후의 채널응답 줄임효과를 나타낸다. 이 경우 post-cursor 성분이 20배 내외로 줄어드나 잡음전력은 약 7dB 정도 크게 증폭되어 HDSL 송수신 기와 같이 광대역 송수신 환경의 경우, 채널응답 줄임 전력은 수신기 성능의 심각한 응용을 가져온다. 그러므로 역 방향필터의 수를 줄여기 위한 채널응답 줄임과 잡음전력 촉각간의 관계를 절충할 수 있는 기법이 요구된다.

SIRF는 줄이고자 하는 역 방향필터의 매수와 관련하여 각각 두 개의 분할구간에 존재하는 에너지의 격차를 최대로 만들 때의 해를 계수로 사용하므로, 이 때의 에너지 비는
\[
\gamma = \frac{w_{\text{wv}} A w_{\text{wv}}}{w_{\text{wv}} B w_{\text{wv}}} = \frac{1}{v_{\text{min}}^2 C v_{\text{min}}} = \frac{1}{\lambda_{\text{min}}^2}
\]
이며, 두 분할 구간 사이의 에너지 격차는 최소 고유값(Eigenvalue) \(\lambda_{\text{min}}\)의 역수로 주어진다.

본 논문에서는 역방향 필터 매수와 잡음전력 촉각간의 관계를 절충하기 위해 최소 고유값 \(\lambda_{\text{min}}\) 을 증가시키며 고유값들의 비(Eigenvalue Spread ratio)를 감소 시킴으로써, 기존의 기법에 비해 잡음이 줄어들고, 채널응답 촉각 면에서 이득을 얻는 기법을 제시한다.

채널 응답 \(h\)에 Tap-Leakage 알고리듬\(^5\)에서와 같이 확률적으로 독립 분포 관계를 갖는 전력 밀도가 \(\sigma^2\)인 의사 잡음신호 \(\delta\)를 채널 응답 신호에 더하고 그것을 \(h_{\text{d}}\)이라고 정의한다.
\[
h_{\text{d}} = h + \delta
\]

이 때 전력 밀도 크기 \(\sigma^2\)는 원래의 채널응답 신호에 크게 영향을 주지 않고 작을 값을 갖는다. 이 경우 (2)식과 (3)식의 상관행렬과 (4)식의 복합행렬은
\[
A_{\text{d}} = E[H'H_{\text{wv}}, A_{\text{wv}}]
\]
\[
= \begin{bmatrix} A_{\text{d}} + \sigma^2, & i = j \\ A_{\text{d}}, & i \neq j \end{bmatrix}
\]

이므로

\[
A_{\text{d}} = \begin{bmatrix} \text{CP} & \text{SIRF} \\ \text{h}_{\text{d}} & \text{h}_{\text{d}} \end{bmatrix}
\]

(10)
3. 실시간 총격 응답 줄임 패턴 설계

접속된 채널의 총격응답을 얻을 경우 SIRF를 최적으로 설계할 수 있다. 그러나 일반적으로 채널의 총격응답은 미리 얻을 수 없으므로 이를 실시간으로 추정하는 것이 필요하며 송수신기간의 초기 접속과정에서 약간된 신호율을 사용하여 채널의 총격응답을 실시간으로 추정한다. 이를 바탕으로 SIRF를 설계한 방식을 기술한다.

채널의 총격응답을 추정하기 위해 자기 상관함수(auto-correlation)가 주기적 일정한 함수로 특정 신호를 전송하여 이를 correlation 함으로써 채널의 총격응답을 추정하는 방법이 널리 쓰이며 이러한 신호들의 대표적인 예로는 polyphase 신호 및

\[
B_j = E \{ H_{\text{out}} H_{\text{out}}^H \} \]

\[
B_j + \sigma^2, \quad i = j
\]

\[
\neq B
\]

\[
C_j = (\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

\[
=(\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

와 같이 주어진다. 즉, \(N \)의 길이를 갖는 왼도우의 구간 내의 총격응답으로 이루어진 상관행렬 \(A \)

\[
= \begin{bmatrix}
A_{ij}
\end{bmatrix}
\]

\[
\neq B
\]

\[
C_j = (\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

\[
=(\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

와 주어진다. 즉, \(N \)의 길이를 갖는 왼도우의 구간 내의 총격응답으로 이루어진 상관행렬 \(A \)에 대한

\[
= \begin{bmatrix}
A_{ij}
\end{bmatrix}
\]

\[
\neq B
\]

\[
C_j = (\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

\[
=(\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

와 주어진다. 즉, \(N \)의 길이를 갖는 왼도우의 구간 내의 총격응답으로 이루어진 상관행렬 \(A \)에 대한

\[
= \begin{bmatrix}
A_{ij}
\end{bmatrix}
\]

\[
\neq B
\]

\[
C_j = (\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

\[
=(\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

와 주어진다. 즉, \(N \)의 길이를 갖는 왼도우의 구간 내의 총격응답으로 이루어진 상관행렬 \(A \)에 대한

\[
= \begin{bmatrix}
A_{ij}
\end{bmatrix}
\]

\[
\neq B
\]

\[
C_j = (\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

\[
=(\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

와 주어진다. 즉, \(N \)의 길이를 갖는 왼도우의 구간 내의 총격응답으로 이루어진 상관행렬 \(A \)에 대한

\[
= \begin{bmatrix}
A_{ij}
\end{bmatrix}
\]

\[
\neq B
\]

\[
C_j = (\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

\[
=(\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

와 주어진다. 즉, \(N \)의 길이를 갖는 왼도우의 구간 내의 총격응답으로 이루어진 상관행렬 \(A \)에 대한

\[
= \begin{bmatrix}
A_{ij}
\end{bmatrix}
\]

\[
\neq B
\]

\[
C_j = (\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

\[
=(\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

와 주어진다. 즉, \(N \)의 길이를 갖는 왼도우의 구간 내의 총격응답으로 이루어진 상관행렬 \(A \)에 대한

\[
= \begin{bmatrix}
A_{ij}
\end{bmatrix}
\]

\[
\neq B
\]

\[
C_j = (\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]

\[
=(\sqrt{A_j})^{-1}B_j (\sqrt{A_j})^{-1}
\]
위적으로 δ 를 정의하였던 것을, 추정된 증가응답에 포함된 채널의 잡음을 δ 로 간주하여 설계할 수 있다. 그림 8 는 CSA 선호 1 번에서 채널 족음을 하에서 송수신기간 초기 접속과정중 채널의 증가응답을 추정하여 설계된 SIRF 의 비트 오율 특성을 나타낸다. 증가응답을 추정하여 설계한 SIRF 는 각각의 채널에 적합하게 설계된 SIRF 에 비하여 0.1-0.3dB 정도의 추가적인 SNR 영향이 발생한다. 그러나 가정된 채널에 맞게 설계된 SIRF 를 다른 채널에 적용할 때, 적은 성능 영향을 수반하게 된다.

4. 결론

본 논문에서는 HDSL 송수신환경에서 결정 계획 알 있는 전방 필터 링의 수를 줄이기 위해서 증가응답 족임 설명을 도입하였고, 기존의 알고리즘에 있는 잡음전력 증폭 문제는 개선하기 위하여 적절한 잡음 전력 증폭 1dB 이내로 줄이는 방법 내에서 역방향 필터링의 수를 절반 하여 줄이는 알고리즘을 제안하였다. 그리고 송수신기 초기화 과정 중에 채널의 증가응답을 설계하음으로 추정하여 SIRF 를 설계하였다.

그림 6 채널의 증가응답 추정 동가 블록도

(a) $p_1(n)$의 과형 (b) $p_2(n)$의 과형

(c) $p_3(n)$의 주파수응답 (d) $p_4(n)$의 주파수응답

그림 7 $p_3(n)$ 과 $p_4(n)$ 신호의 과형과 주파수응답

그림 8 추정된 채널의 증가 응답 영(20dB SNR)

(a) CSA 1 번 (b) CSA 4 번

그림 9 채널 추정후 설계된 SIRF 의 비트 오율 성능

참고문헌