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Abstract

To screen the differentially expressed microRNAs re-
lated to radio-resistance, we compared the microRNA 
profiles of lung cancer cells with different responses 
to ionizing radiation (IR). Of 328 microRNAs in micro-
array, 27 microRNAs were differentially expressed in 
NCI-H460 (H460) and NCI-H1299 (H1299) cells. Among 
them, let-7g was down-regulated in radio-resistant 
H1299 cells, and the level of let-7g was higher in ra-
dio-sensitive cells like Caski, H460, and ME180 in 
qRT-PCR analysis than in radio-resistant cells like 
A549, H1299, DLD1, and HeLa. Over-expression of 
let-7g in H1299 cells could suppress the translation of 
KRAS, and increase the sensitivity to IR. When we 
knockdown the expression of LIN28B, an upstream 
regulator of let-7g, the level of mature let-7g was in-
creased in H1299 cells and the sensitivity to IR was also 
enhanced in LIN28B knockdown cells. From these da-
ta, we suggest that LIN28B plays an important role in 
radiation responses of lung cancer cells through in-
hibiting let-7g processing and increasing translation 
of KRAS.
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Introduction

Together with surgery and chemotherapy, ionizing 
radiation (IR) plays a central role in the treatment 
of human cancers. Approximately half of all cancer 
patients can be treated with radiotherapy, but the 
therapeutic strategy must be carefully adjusted to 
achieve an effective therapeutic dose while mini-
mizing side effects (Wu et al., 2002). Nonetheless, 
a sizable proportion of patients do not respond to 
radiotherapy. There have been a lot of efforts to 
improve the delivery of high doses to tumors while 
saving normal tissues during last decades. Such 
efforts are mainly focused on the physical aspects 
such as planning and delivery, rather than the 
biological parameters determining the radio-sensi-
tivity of each patient. 
    Radio-resistance has been shown to be related 
to the expression of several genes such as TP53 
(Biard et al., 1994), BCL2 (Lee et al., 1999), and 
BIRC5 (Asanuma et al., 2000). Over-expression of 
RAS (Sklar, 1988) confers radio-resistance, while 
ATM increases sensitivity to ionizing radiation 
(Westphal et al., 1997). Although such findings 
have helped establish models for the molecular 
mechanisms responsible for radio-sensitivity, the 
whole process is still poorly understood. Microarray 
technology permits simultaneous analysis of the 
expression levels of multiple genes at the whole 
genome level (Park et al., 2002). Genome-wide 
analysis can lead to the identification of gene 
regulatory pathways that result in the development 
of resistance to therapeutic procedures. Differential 
gene expression profiles of radio-resistant breast 
cancer, esophageal cancer, and uterine cervical 
cancer cell lines have been examined using mi-
croarray analysis (Hanna and Shrieve, 2001; 
Kitahara et al., 2002).
    Translational suppression by microRNA is one of 
the major regulatory mechanisms in carcinoge-
nesis, development, and immune system function 
(He et al., 2007; Flynt and Lai, 2008). The 
microRNA let-7 has been reported to regulate the 
radiation response in human cancers (He et al., 
2007; Weidhaas et al., 2007). In this study, we 
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Figure 1. Differential expression of let-7g and post-transcriptional regulation of KRAS. Following γ-irradiation at 0, 2, 5, and 10 Gy, the numbers of foci 
were scored to measure survival faction in H460 and H1299 lung cancer cells (A). Sensitivity of eight cancer cell lines (Caski, H460, ME180, A549, 
H1299, Hep3B, DLD1, and HeLa) to ionizing radiation at 5 Gy was determined by MTS assay (B). Determination of the level of mature let-7g by qRT-PCR 
(C). Expression of KRAS mRNA and protein in H460 and H1299 cells was measured qRT-PCR and western blot analysis (D). KRAS protein levels in eight 
cancer cells were also quantified from the western blot and densitometric measurement (E). 

compared the microRNA expression profiles of two 
lung cancer cells with different responses to IR and 
listed 27 microRNA candidates related to the 

differential responses to IR. let-7g was down- 
regulated in radio-resistant H1299 cells and could 
not suppress the translation of KRAS. When we 



914  Exp. Mol. Med. Vol. 41(12), 912-918, 2009

microRNA
Log2[Signal Intensity]1

(mean ± SD) Log2 [Activation
Fold Ratio]2

P value3

(t-test)
NCI-H460 NCI-H1299

Down-regulated in NCI-H1299 cells 　
     let_7g   7.429 ± 0.334 10.686 ± 0.140 -3.257 1.91E-08
     let_7i   5.851 ± 0.081 12.725 ± 0.292 -6.874 2.65E-11
     miR_138   2.450 ± 0.571   6.813 ± 1.527 -4.363 0.00017 
     miR_152   2.688 ± 0.630   4.939 ± 1.441 -2.251 0.00158 
     miR_193b   3.037 ± 0.672   6.364 ± 0.482 -3.327 4.32E-07
     miR_34a   3.100 ± 0.733   8.422 ± 0.229 -5.321 4.27E-08
     miR_363_AS   6.840 ± 0.763   9.613 ± 0.467 -2.773 0.00006 
     miR_367   2.043 ± 0.696   4.854 ± 1.431 -2.811 0.00110 
     miR_491   8.377 ± 0.052 10.763 ± 0.763 -2.387 0.00002 
Up-regulated in NCI-H1299 cells 　
     miR_100 12.105 ± 0.439   8.594 ± 0.339  3.511 1.20E-06
     miR_10a 10.069 ± 0.142   7.407 ± 0.350  2.662 1.13E-08
     miR_125b 10.030 ± 0.156   7.269 ± 0.836  2.760 0.00002 
     miR_136   5.480 ± 0.093   3.303 ± 0.976  2.177 0.00024 
     miR_181c   5.578 ± 0.158   3.274 ± 1.399  2.304 0.00161 
     miR_195   7.844 ± 0.264   3.680 ± 1.258  4.164 0.00001 
     miR_19a   7.192 ± 0.117   4.698 ± 1.596  2.493 0.00165 
     miR_28   7.720 ± 0.181   5.189 ± 1.918  2.530 0.00318 
     miR_301   7.158 ± 0.197   3.537 ± 1.165  3.621 0.00005 
     miR_30a_3p   5.608 ± 0.159   2.440 ± 0.869  3.167 0.00001 
     miR_30e_3p   6.051 ± 0.089   2.757 ± 1.009  3.294 0.00002 
     miR_331   5.250 ± 0.150   3.116 ± 0.920  2.135 0.00008 
     miR_362   5.804 ± 0.217   3.531 ± 1.885  2.273 0.00530 
     miR_365   5.076 ± 0.141   2.846 ± 1.282  2.231 0.00085 
     miR_374   6.208 ± 0.222   2.412 ± 1.260  3.796 0.00005 
     miR_501   5.053 ± 0.332   2.199 ± 1.808  2.853 0.00062 
     miR_9_AS   5.595 ± 0.170   3.355 ± 0.828  2.240 0.00006 
     miR_98   6.526 ± 0.096   3.831 ± 1.274  2.695 0.00038 

Table 1. List of differentially expressed microRNAs in radio-resistant H1299 cells.

knockdown LIN28B by siRNA, the maturation of 
let-7g was restored and the radio-sensitivity of 
H1299 cells was increased. 

Results

Differential expression of microRNAs in lung cancer 
cells

To understand the post-transcriptional regulation 
related to radio-resistance, we chose H460 and 
H1299 human non-small cell lung cancer cells. 
H460 cells showed more sensitive response to IR 
than H1299 (Figure 1A). Using these two cells, we 
examined the profiles of microRNA expression and 
selected differentially expressed microRNAs. Using 
microRNA microarray, we could compare the 
expression of 328 human microRNAs among 622 
probes in the microarray. From eight-times 
replicated data from two independent experiments, 
we selected 27 differentially expressed microRNAs 

by statistical analysis (log2 (signal intensity) ＞ 2, 
log2 (activation fold ratio) ＞ 2 or ＜ -2 and t-test P
＜ 0.001), as listed in Table 1. 
    Nine microRNAs were down-regulated in radio-re-
sistant H1299 cell, and we selected let-7g to check 
its expression in eight cancer cells with different 
radio-sensitivity. We could classify them into two 
groups according to their survival fractions after 
irradiating 5 Gy (Figure 1B). Caski, H460, and 
ME180 cells were more sensitive to IR than A549, 
H1299, Hep3B, DLD1, and HeLa cells. Using 
qRT-PCR against mature let-7g, we checked the 
level of mature let-7g to find the up-regulation of 
let-7g in radio-sensitive cells (Figure 1C). 

Post-transcriptional control of KRAS by let-7g

Oncogenic activation of KRAS is closely related to 
clinical course of lung cancer including the respon-
siveness to radiotherapy. As a target of let-7g, the 
protein level of KRAS was examined in H460 and 
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H1299 cells to find the down-regulation of KRAS in 
H460 cells (Figure 1D). In addition, we also 
examined KRAS expression in eight cancer cells to 
find the reverse correlation with the level of let-7g 
(Figure 1E). These data suggest that KRAS 
expression is regulated at the post-transcriptional 
level in H460 cells.

Control of radio-sensitivity by let-7g

To further investigate the role of let-7g in radio-re-
sistance, we over-expressed let-7g in radio-resis-
tant H1299 cells to determine whether radio-sensi-
tivity was affected by suppression of KRAS transla-
tion. Ectopically expressed let-7g could down-regu-
late KRAS expression in H1299 cells at both the 
protein and mRNA level (Figures 2A and 2B). In 
addition, the let-7g could enhance the radio-sensi-
tivity (Figure 2C). 

LIN28B regulates let-7g and KRAS expression

Because LIN28B can selectively block the proce-
ssing of primary let-7 microRNA, we investigated 
the level of LIN28B in H460 and H1299 lung cancer 

cells (Figure 3A). To test whether the suppression 
of let-7g maturation by LIN28B in H1299 cells, we 
introduced siRNA against LIN28B into H1299 cells 
(Figure 3B). Knockdown of LIN28B by siRNA 
induced the decreased level of pre-let-7g (Figure 
3B) and increased the level of mature let-7g 
(Figure 3C). KRAS protein levels were also 
decreased in siLIN28B-transfected cells as well 
(Figure 3B). Moreover, knockdown of LIN28B led 
H1299 cells to increase their sensitivity to IR 
(Figure 3D). 

Discussion

To understand the post-transcriptional control of 
radio-sensitivity by microRNA, we analyzed 
microRNA profiles from two lung cancer cells with 
different responses to IR. Among 27 differentially 
expressed microRNAs, we focused on let-7g 
because it was known to suppress the translation 
of KRAS previously (Johnson et al., 2005). To 
evaluate the role of let-7g in radio-sensitivity, we 
examined the level of mature let-7g in eight cancer 
cells. An increased level of let-7g was confirmed in 

Figure 2. Regulation of radio-sensitivity by let-7g. let-7g expression vector was in-
troduced into radio-resistant H1299 cells, and the expression of KRAS was determined 
by qRT-PCR (A) and western blot (B). The effect of let-7g on cell survival following 
γ-irradiation was measured by MTS assay (C). 
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Figure 3. Knockdown of LIN28B en-
hances the radio-sensitivity. The 
protein levels of LIN28B in H460 
and H1299 cells were measured by 
western blot (A). After the in-
troduction of siLIN28B into H1299 
cells, the level of LIN28B, pre-let-7g
and KRAS were measured by 
RT-PCR (B). The level of mature 
let-7g was also measured in LIN28B- 
knockdown H1299 cells by qRT-PCR 
(C). LIN28B-knockdown H1299 cells 
were irradiated at 5 Gy and survival 
was determined by MTS assay (D). 

other radio-sensitive cells like ME180 and Caski. 
Although we need to validate the correlation of 
let-7g and outcome of radiotherapy in patients, we 
can suggest that the level of let-7g was correlated 
with radio-sensitivity. 
    Direct control of microRNA processing by LIN28B 
or LIN28 may determine the level of mature let-7g 
in cancer cells (Viswanathan et al., 2008; Chang et 
al., 2009). LIN28 and LIN28B RNA binding proteins 
were recently demonstrated to negatively regulate 
let-7 biogenesis. We tested hypothesis on the 
regulation of radio-sensitivity by LIN28B by knock-
down experiment. 
    We also reconstituted the effect of let-7g by the 
over-expression of let-7g in a radio-resistant H1299 
cells to enhance the radio-sensitivity. Over-expre-
ssion of let-7 can suppress many target mRNAs 
including KRAS and HMGA2 (Johnson et al., 2005; 
Pillai et al., 2005; Dahiya et al., 2008). We selected 
KRAS as a candidate gene downstream of let-7g 
that is involved in radiation response. Oncogenic 
activation of KRAS is a candidate marker for deter-
mination of prognosis, and there are many reports 
suggesting that mutations in KRAS might play an 

important role in patient outcome (Guerrero et al., 
1984; Bengala et al., 2009). The findings of this 
study suggest that post-transcriptional activation of 
KRAS may also regulate the response to radio-
therapy. 

Methods

Cell culture 

H460, H1299, ME180, and Hep3B cells were maintained in 
Roswell Park Memorial Institute medium 1640 (RPMI 
1640) enriched with 10% FBS (Hyclone, Logan, UT), 1% 
penicillin/streptomycin (Gibco-BRL, Carlsbad, CA), and 2 
mM L-glutamine (Gibco-BRL, Carlsbad, CA). HeLa, A549, 
DLD1 and Caski cells were maintained in DMEM enriched 
with 10% FBS, 1% penicillin/streptomycin, and 2 mM 
L-glutamine.

Clonogenic assay and MTS assay

Cells were seeded into 6-well plates at a density of 
200-500 cells/well and incubated overnight. After exposure 
to ionizing radiation from an accelerator (Clinac 4/100, 
Varian, Palo Alto, CA), cells were cultured for 10-15 days. 
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Colonies were fixed with 100% chilled methanol and 
stained with crystal violet (Sigma, St. Louis, MO).
    The MTS assay was performed using the CellTiter 
Aqueous OneSolution kit (Promega, Madison, WI). Cells 
were seeded into 96-well plates at a density of 5,000 
cells/well and incubated overnight. After exposure to 
ionizing radiation, cells were incubated for 4-5 days, MTS 
(3-(4,5-dimethylthiazol-2-yl))-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium) was added to each well 
and incubated for 1 h, and absorbance was measured at 
490 nm. 

MicroRNA microarray and data analysis

Small RNAs from H460 and H1299 cells were isolated 
using mirVana microRNA isolation kit (Applied Biosys-
tems/Ambion, Austin, TX) as described by the manufac-
turer. The purity and integrity of total RNA were checked 
using Bioanalyzer (Agilent, Santa Clara, CA). Synthesis of 
probes from total RNA samples, hybridization, detection, 
and scanning were performed according to standard 
protocols from Ambion (Applied Biosystems/Ambion, Austin, 
TX). We used samples from duplicated experiments and a 
mirVana microRNA microarray containing 2,000 spots with 
quaduplicates for 600 microRNAs from human, mouse, 
and rat. For data analysis, fluorescence intensity was 
processed and measured using a Exon scanner or 
GeneChip scanner 3,000. The raw intensity values were 
corrected and normalized with GeneSpring program 
(Agilent, Santa Clara, CA)(Park et al., 2002). 

Western blot analysis 

Whole cell extracts were prepared using RIPA lysis buffer 
containing protease inhibitor cocktail (Roche, Basel, 
Switzerland). Protein extracts were separated in a 12% 
SDS-PAGE gel and transferred to a nitrocellulose membrane. 
Membranes were blocked with 5% BSA and incubated with 
mouse anti-KRAS (Oncogene Research Products, La 
Jolla, CA), rabbit anti-LIN28B (Abcam, Cambridge, MA), or 
mouse anti-beta-actin (Sigma, St. Louis, MO) antibody. 
Membranes were then incubated with HRP-conjugated 
anti-mouse IgG (Santa Cruz Biotechniques, Santa Cruz, 
CA) and anti-rabbit IgG (Jackson ImmunoResearch 
Laboratories, West Grove, PA) and visualized with 
SuperSignal West Pico Cheminoluminescent Substrate 
(Pierce, Rockford, IL). 

qRT-PCR

The relative Ct method with SYBR green was performed 
with the 7,000 Real-Time PCR System (Applied Biosystems, 
Austin, TX). The following primers were used: KRAS, 
5'-CGTAGGCAAGATGCCTTGA-3' and 5'-CCTCTTGACC-
TGCTGTGTCG-3'; LIN28B, 5'-TGCACTTCAACTCTCCC-
TCG-3' and 5'-GAACTGAAGGCCCCTTTTTG-3'. Levels of 
mature microRNA species were measured by quantitative 
PCR using commercially available TaqMan probes (Applied 
Biosystems, Austin, TX) according to the manufacturer's 
instructions using U6B small RNA as an internal standard 
for normalization.

Cloning

Primary let-7g sequence was amplified from HeLa genomic 
DNA and cloned into the pCR-8-Topo vector (Invitrogen, 
Carlsbad, CA) for direct use in in vitro transcription. Cloned 
pri-miRNAs were subcloned into pcDNA-Dest47 for 
expression study. Full-length KRAS was cloned into the 
pCEP4 vector (Invitrogen, Carlsbad, CA).

Knockdown with siRNA 

siRNA targeting LIN28B (siLIN28B) was purchased from 
Dharmacon (Lafayette, CO). siLIN28B or non-targeting 
siRNA was transfected to H460 and H1299 cells at 100nM. 
Total RNA was collected at 24 h after transfection to 
quantify LIN28B mRNA by quantitative RT-PCR with 
GAPDH as a normalization control. The protein levels were 
measured by western blot analysis using anti-LIN28B 
antibody (Abcam, Cambridge, MA).
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