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Efficient Hardware Controller Synthesis
for Synchronous Dataflow Graph in

System Level Design
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Abstract—This paper concerns automatic hardware synthesis
from data flow graph (DFG) specification in system level design. In
the presented design methodology, each node of a data flow graph
represents a hardware library module that contains a synthesizable
VHDL code. Our proposed technique automatically synthesizes a
clever control structure, cascaded counter controller, that supports
asynchronous interaction with outside modules while efficiently
implementing the synchronous dataflow semantics of the graph
at the same time. Through comparison with previous works with
some examples, the novelty of the proposed technique is demon-
strated.

Index Terms—Data flow graph (DFG), synchronous data flow
(SDF), system level design, VHDL.

I. INTRODUCTION

T HOUGH hardware description languages (HDLs), such as
VHDL and Verilog, have gained considerable popularity

in system design, there is also increasing need for easier and
more intuitive method for system specification. Moreover,
high level system design requires specification method of
higher level of abstraction than HDLs which are biased to
hardware model. Among many candidates, data flow graph
(DFG) is adopted in many high level design frameworks [1],
[2], specially for signal processing applications, because of
formality and readability.

In our design methodology, functionality of a system is spec-
ified with a hierarchical data flow graph [Fig. 1(a)]. An atomic
node represents a computation block, such as multiplier or filter,
and an arc represents the flow of data samples between two end
nodes. We use a rather restricted data flow model in this paper,
synchronous data flow (SDF) [4], in which the number of data
samples produced or consumed on an arc is fixeda priori. This
restricted semantics enables us to verify important system prop-
erties such as memory boundedness and termination, and to es-
timate the system performance statically.

After the functionality of the system is verified by static anal-
ysis and behavioral level simulation, the nodes are partitioned
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Fig. 1. (a) A DFG before partitioning. (b) A partitioned DFG for hardware
module using send and receive nodes.

into several graphs to be synthesized into hardware or software
modules. VLSI design for a hardware module begins with a par-
titioned subgraph as shown in Fig. 1(b). For hardware synthesis,
we generate a structural VHDL code which will be finally syn-
thesized to hardware through any standard logic synthesis tool.
Since we assume that a node describes its functionality with a
synthesizable VHDL code in the library, the hardware synthesis
problem is to stitch the library VHDL codes into a whole by au-
tomatically synthesizing interface codes and control codes for
register initialization, appropriate clocking and signaling, and
other glue logics.

When synthesizing a hardware module from a partitioned
subgraph, there are two issues to be addressed. First, the
SDF semantics should be preserved in the generated code
so that the resulting hardware has the behavior intended by
the original DFG. This achieves the useful design concept of
“ .” Second, the partitioned DFG
needs special nodes for communication with other partitioned
graph. Two receive nodes and one send node are added in the
partitioned subgraph in Fig. 1(b) for this purpose. While there
are some previous works that addressed the former issue [3],
[5], [7], [8], there has been no research result known to us
except Lauwereins’ work (GRAPE) [6], [7] that addressed both
issues at the same time.

This paper proposes a novel technique to automatically syn-
thesize a clever control structure, cascaded counter controller,
that supports asynchronous interaction with outside modules
while efficiently implementing the dataflow semantics of the
graph at the same time. Through comparison with Lauwereins’
distributed approach with some examples including DES cryp-
tographic algorithm, the novelty of the proposed technique will
be demonstrated.

II. RELATED WORKS

There are two possible approaches for system level design
from a DFG specification. One is the distributed approach and
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the other is the centralized approach. These approaches are clas-
sified by how to implement the control logic to satisfy the se-
mantics of DFG.

In the distributed approach, control logic is distributed and
each node is executed by the local control logic to implement
handshaking protocol between node pairs for determining the
completion time of the source node. GRAPE [6] and [7] is a
well-known tool of this approach. There is a buffer component
between a pair of task nodes and handshaking protocol is imple-
mented between the buffer component and each task node. The
handshaking mechanism is also a natural method to communi-
cate with the outside.

The centralized approach is used in Ptolemy [2] and [3] and
Meyr’s work [5] and [8], where there is no control signal ex-
change between task nodes. Through static analysis, the start
time and the completion time of each node is predetermined
with respect to the global clock, and the central controller gen-
erates the appropriate control signals. However, they assume
that the execution time, at least the worst-case execution time,
of each node is knowna priori; without this assumption, the
fully-synchronous design is not possible. Moreover, the inter-
face with the outside has not been addressed except the batch
communication scheme of [8].

Since the distributed approach has larger area overhead of
local controllers than the central controller of the centralized
approach, we follow the centralized approach in this paper. We
propose a technique to overcome the limitations of the pre-
vious works, allowing both nodes of unknown execution time
and asynchronous interfaces of unknown arrival time with the
outside.

III. CENTRAL CONTROLLER

In this section, we identify the control signals that the cen-
tral controller should generate, and the desired behavior of the
controller. There are four types of library blocks: combinational
logic, single-cycle sequential logic, multicycle sequential logic
with fixed execution time, and multicycle sequential logic with
variable execution time.

Depending on the block type, we predefine the minimal set of
control signals for proper operation. A block of combinational
logic needs no control signal. For a single-cycle sequential logic
block, we extract the state element from the body to make it
a Mealy-type state machine. Then, thestate-updatesignal as
well as clock and reset signals are needed for this state element.
Multicycle sequential logic blocks contain state elements inside.
Therefore, we need to provide clock and reset signals to the
block. Moreover, astart signal enters into the block to indicate
the start time. If a block has unknown execution time, the block
should inform the controller the end of execution by providing
donesignal.

Fig. 2(a) shows a simple example that consists of all types
of blocks. We integrate the library blocks and the synthesized
central controller into a synchronous hardware as shown in
Fig. 2(b). Here, all blocks are connected directly unlike in
case of distributed approach that needs glue logic. In Fig. 2(c)
the expected timing of control signals are drawn. Here, we
assume that execution times of nodes A, B, and C are 30, 20,

(a)

(b)

(c)

Fig. 2. (a) An example DFG with various types of nodes. (b) Synthesized
hardware structure and (c) expected signal timings.

80 time units, respectively, while the execution time of node
D is unknown. Though the hardware is fully synchronous, the
timing of donesignal for block D should vary at run-time: how
to achieve this will be explained later.

One important design parameter is the global clock. All clock
signals of Fig. 2(c) should be multiples of the base clock period.
The optimal base clock period can be found using the greatest
common divisor (GCD) of the minimum periods of all clock
signals [9]. However, the GCD is sometimes too small to be
practically implemented. And faster global clock also makes the
control hardware more complex. Thus, there is a tradeoff the
performance and the controller area with respect to the global
clock selection.

IV. I NTERFACEPROBLEM WITH THE OUTSIDE

The interface nodes with the outside can be implemented in
various ways according to the interface architecture or the com-
munication scheme between modules. When synchronous com-
munication or batch communication is chosen in the system
architecture, the timing of reading the received samples are pre-
determined. Then, the interface logic becomes trivial and the
whole hardware can be synthesized as a synchronous logic. But
we may not always use such communication schemes. For ex-
ample, batch communication scheme cannot be applied to the
DFGs which have global feedback arcs. If synchronous com-
munication scheme is used, tasks should be scheduled assuming
the worst case execution time resulting in large overhead.

On the other hand, an asynchronous communication scheme
can be used when the receive nodes do not know when data sam-
ples arrive from the outside. At the receiver side, the incoming
samples are delivered by the synchronizer to the inside, and the
hardware module is signaled somehow and starts processing.
After data processing is completed, the result sample is placed
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Fig. 3. Simple example using a counter. Node execution time of A, B, C, and
D are 10, 30, 20, and 20 time units, respectively.

Fig. 4. Solutions for multiple receive nodes.

to a certain location from which the sending operation is per-
formed. In this paper, we are seeking for a hardware controller
that can be implemented with small area overhead but keeping
the performance requirements based on asynchronous commu-
nication scheme.

The key idea is to utilize the properties of the synchronous
data flow model where the execution sequence of the nodes is
predetermined at compile-time. If the execution time of a block
varies at run time over a certain duration, the block is regarded
as an asynchronous block that is addressed in Section V-D. For
simple explanation of the proposed idea, we assume that input
samples do arrive at the hardware module in the nonpipelined
fashion. Also, the hardware module expresses the state regis-
ters explicitly as illustrated in Fig. 3. Since we do not need to
pipeline the hardware module further, all state registers can be
latched at the end of the execution.

The value of counter is initially set to the critical path length,
60, of the hardware graph ignoring the execution times of RCV
and SND nodes. When the RCV node receives data, counter
starts decreasing. When the counter value becomes zero, the
output of node D is written to the buffer of the SND node
(send buffer) and latch the state registers if any. The counter
is reloaded with the initial value. Thus the simple counter
accomplishes a controller that is triggered by the hardware
valid flag written by the RCV node.

Now consider a DFG with multiple receive nodes as dis-
played in Fig. 4(a). If we use a single counter, the counter should
be enabled only when two input samples both arrive at the inter-
face. Thus, the hardware module performs a strict execution and
may pay significant performance penalty. In order not to lose
performance, we compute the pair-wise critical path lengths be-
tween all receive nodes and the send nodes. The following equa-
tion suggests the valid timing of theth send node

(1)

Fig. 5. FSM controller for multiple receive nodes.

Fig. 6. A DFG that has receive nodes and send nodes and implemented
cascaded counter controller.

where the maximum is taken over all receive nodes. de-
notes the valid timing of theth send node, the receive
timing of the th receive node and is the critical path length
from the th receive node to theth send node.

There are several approaches to implement the control logic
that satisfies the above equations. The first approach simply uses
counters as many as the number of receive-send pairs and ANDs
the completion times of all counters destined for each SND node
[Fig. 4(b)]. This implementation requires too many counters.
However, we can reduce the number of counters using other
glue logic like Fig. 4(c) or cascaded counter structure which is
presented in the next section.

Another approach is to synthesize the FSM that satisfies the
above equation. The FSM should wait the receive signal at
scheduled receive timing. Fig. 5 shows the constructed FSM
controller for the example of Fig. 4 assuming that the base
clock has period 10. In S1 state, the FSM checks if RCV1 has
received a data sample, and waits until a data sample arrives
at RCV1. In the last state, S5, the FSM generates the enable
signal for the send block.

V. CASCADED COUNTER CONTROLLER

A. Basic Idea

Consider an example of Fig. 6(a), which has three receive
nodes and two send nodes. Assuming that node execution times
of A, B, C, and D are 20, 10, 20, and 30 time units, respectively,
critical path lengths from each receive node to the second send
node (SND2), , , and are 60, 40 and 50 time
units, respectively.

Intuitively, the ideal timing of send and receive nodes is like
Fig. 6(b). This schedule can be obtained by ALAP (as late as
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possible) scheduling from the instant of SND2. However, we
may not assume that the RCV nodes do always receive data
samples on time. Therefore, an efficient controller should figure
out the earliest time for the readiness of output, regardless of the
order in which the inputs arrive, assuming nonstrict execution
of the graph. So we design a controller that has somecheck
points while executing. If the check fails due to absence of input
samples, the controller should stop executing and wait until
the check succeeds. The proposed controller, called cascaded
counter controller [Fig. 6(c)], satisfies this requirement.

In this controller, a single counter is split into many sections
to form a cascaded counter array and the check points are made
between the sections. Initially, the counter values are set to 10,
10, and 40, respectively, corresponding to the scheduled time
intervals in Fig. 6(b). Only after the RCV1 node receives data,
the first counter starts decreasing. Each counter starts decreasing
after the previous counter is decreased to 0 and the currentvalid
signals of RCV nodes are set to TRUE. At this point, the AND
gate plays a role of check point logic. Thezerosignal not only
enables the next counter but also disables the current counter.
The lastzerosignal is theiteration boundsignal that indicates
the end of the current iteration and the start of the next iteration.
This iteration boundsignal becomes the enable signal for the
last SND buffer, state register and delay register update signals,
clear signal for valid and zero flags, and the counter initializa-
tion signal.

The complexity of the proposed cascaded counter controller
is not much different from the simple counter structure shown
in Fig. 3 except the flip-flops associated with the valid flags
of receive nodes and AND gates. This cascaded counter con-
troller can be also used for low-power design because at most
one counter is operating at any instant.

In case the input DFG has a single send node as its destina-
tion node, the cascaded counter structure achieves the optimal
performance. This fact is rephrased in the following theorem.

Theorem 1: For a DFG with a single send node as its desti-
nation node, the finish time of cascaded counting is equal to the
valid timing of the send node of (1).

Proof: First, we simplify the valid timing equation with a
single send node

(2)

We assume that is sorted in the decreasing order such that
when and the number of receive (source) nodes

is . Thus the value of each counter,is

We are now going to prove that is equal to , the finish
time of the cascaded counter

Fig. 7. Dependency between send and receive node. (a) Original graph
before partitioning. (b) Scheduling to prevent deadlock. (c) Cascaded counter
controller that implements the schedule (b).

Fig. 8. A DFG having delay element(s).

where is the start timing of theth counter. By recursive
substitution

B. Dependency Between Send and Receive Nodes

With the dependency between send and receive nodes, dead-
lock may occur if such dependency is ignored and an overlapped
cascaded counter controller is used. In case the RCV3 node is
dependent on the SND1 node in Fig. 6(a), deadlock occurs ob-
viously. The fact that a receive node is dependent on a send node
means that the receive node cannot receive data until the send
node sends its data. To understand this situation, we need to look
into the original DFG before partitioning. Fig. 7(a) shows this
original DFG before partitioning.

According to the DFG in Fig. 7(a), a partial execution order of
nodes becomes B, SND1, G (in other module), RCV3, and C. To
obtain the schedule result like Fig. 7(b), we have to add a pseudo
dependency arc between SND1 and RCV3 node. Fig. 7(c) shows
the implementation of cascaded counter controller according to
the schedule of Fig. 7(b).

C. Delay Registers

In a DFG, delay elements may exist and they correspond to
data registers in hardware implementation. If a DFG has a delay
element, the delay register plays a role of a termination node.
The graph is separated by this delay element in Fig. 8(a) and
separated graphs are running concurrently in hardware imple-
mentation. Pipelined hardware implementation can be also ob-
tained simply by adding delay elements. In case there is a node
that contains pipeline registers, we first make those pipeline reg-
isters visible and apply the same method. Fig. 8(b) shows the
concurrent schedule of the graphs in Fig. 8(a) and this schedule
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Fig. 9. Modified graph for internal asynchronous communication.

Fig. 10. A more complicated example.

can be implemented with only one cascaded counter controller
depicted in Fig. 8(c).

D. Variable Execution Time

A hardware node may take nondeterministic time units
for their executions. As mentioned in Section III, multicycle
sequential logic blocks with variable execution time needstart
and done signal. In this case, we regard such a node as an
asynchronous node and append send nodes before the input
ports, and the receive nodes after the output ports. Thestart
signal is generated from the send nodes and transferred to the
asynchronous node anddonesignal is generated from the asyn-
chronous node and transferred to the receive nodes. With this
modified graph, we construct the cascaded counter controller.
Fig. 9 shows the modified graph for internal asynchronous
communication.

E. Cascaded Counter Construction Algorithm

We summarize how the corresponding cascaded counter con-
troller is constructed in general using a complex example of
Fig. 10(a).

The construction algorithm of the cascaded counter controller
is summarized below.

Step 1) Find out all critical path lengths between destination
nodes and source nodes. Destination nodes are the
sink nodes, the send nodes, or delay elements from
the partitioned graph. The critical path length is 120
time units from node B to the delay element next to
node D.

Step 2) Compute ALAP (as late as possible) and ASAP (as
soon as possible) schedule times of all nodes. And,
assign the ALAP time for each receive node and the
ASAP time for each send node as the expected start

time of the node execution. Fig. 10(b) shows the
schedule of send and receive nodes.

Step 3) Sort the execution times of destination nodes and
source nodes. Construct the cascaded counter con-
troller from this timing information. The firing time
of RCV1 is scheduled at 100, while the cascaded
counter controller begins with the critical path length
of the graph, which is 120. Counters are split by
the receive firing times 100 and 30. So the cascaded
counter controller is split into three counters that
load the initial values of 20, 70 and 30, respectively.

Step 4) Add the control logic for send nodes at their firing
times. Since the firing times of the send nodes are 70
and 50, compare logic should be added at the output
of the second counter to generate the enable signal
to the send buffer. Finally the zero signal of the last
counter is used for updating signal of delay registers.
This signal notifies that one iteration ends and the
next iteration is prepared.

VI. OPTIMAL CLOCK PERIOD SELECTION

In the previous section, the execution time of each node is
specified in virtual time units for simplicity. The virtual time
unit can be a clock period in the practical synthesis. Therefore,
the actual execution time considering clock period can be de-
scribed by

where and are the execution time of combinational
and sequential logic. and represent clock period and
propagation delay. and are minimum clock
period and required number of clocks of sequential logic. So
the optimal clock period in this paper means the clock with the
shortest DFG complete time.

The methods of selecting the optimal clock period for given
DFG have studied in some works such as [9], [10]. All these
methods compute a set of candidate of clock periods by taking
the integral divisors of the execution time of each node. In [10],
an idea that can reduce the size of the set was presented. This
method can be applied to our scheduling algorithm in the cas-
caded counter construction by the repetitive scheduling for each
candidate clock period.

VII. EXPERIMENTS

We compare the area overhead between using our approach
and the distributed approach such as used in the GRAPE tool.
Since we used local counters inside the nodes and handshaking
protocol between nodes in the distributed approach, we expect
that hardware resources will be consumed more with the dis-
tributed approach. The latency of our approach is similar to that
of distributed approach as expected in the optimality proof in
Section V-A.

We experimented a DES encryption algorithm implementa-
tion. The target library is “xfpga_4000ex-4.db” of the commer-
cial Xilinx FPGA and the clock periods we used are 5, 20, and
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Fig. 11. Specified 16 round DES encryption algorithm. Internal details are not
specified.

TABLE I
EXPERIMENT RESULT: DES

TABLE II
EXPERIMENT RESULT: FIG. 10

50 ns. We make 16 rounds of the DES encryption algorithm
(Fig. 11). The first round execution time is 26 ns and the other
rounds have the execution time of 24 ns.

The specified DES algorithm is implemented in our codesign
framework. Automatically generated codes contain the central-
ized cascaded counter. In the distributed approach, the interface
between each node assumes two-phase handshaking. We also
implemented a central controller using FSM. The experimental
results are summarized in Table I. The area overhead in the dis-
tributed approach mainly consists of counters and registers to
support handshaking protocol between each node.

We also experimented with the example of Fig. 10 assuming
that one time unit is 10 ns. So the iteration period is 1200 ns.
The result is summarized in Table II. As shown in Table II, the
FSM implementation with 5 ns clock period has large overhead.

In the centralized approach using FSM, the area overhead
grows more rapidly than using cascaded counter as the iteration
period increases. It is because the FSM states are implemented
using binary encoding.

As shown in Tables I and II, the whole system can be imple-
mented efficiently by the centralized approach without hand-
shaking between internal nodes. This means that we exploit the
static schedule information at compile time as much as possible.
At the same time, we use handshaking protocol to communicate
asynchronously with the outside.

VIII. C ONCLUSION

In this paper, we addressed how to synthesize the hardware
control module from the initial DFG specification for hard-
ware–software codesign. We proposed a novel control structure,
cascaded counter controller, to reduce the hardware area or
time considerably, compared with the previous approaches.

Two issues are addressed efficiently with the cascaded
counter controller: the initial DFG semantics should be pre-
served and the performance loss should be avoided as much
as possible. We experimented with some examples including
DES encryption algorithm to demonstrate how the proposed
technique truly builds the working VHDL code, which is
verified with a commercial Xilinx tool.
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