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ABSTRACT

In this paper, we apply three-dimensional limiting process for three-dimensional flow
physics analyses. The basic idea of multi-dimensional limiting condition is that the multi-
dimensionally interpolated values at a vertex point should be within the maximum and
minimum cell-average values of neighboring cells for the monotonic distribution. By
applying the MLP (Multi-dimensional Limiting Process) to the three dimensional Euler and
Navier-Stokes equations, we can achieve monotonic characteristics, which results in the
enhancement of solution accuracy, convergence behavior.

INTRODUCTION

Accurate monotonic schemes for hyperbolic conservation laws are developed based on
one-dimensional flow physics through the analysis of TVD limiters {1], {2]. It shows the
complete monotonic and accurate distribution in a one-dimensional discontinuity. However, if
they are applied to a multi-dimensional problem, the interpolated property, without
considering the effect of other flow directions, certainly leads to a non-monotonic distribution.
In order to find out the monotonicity condition for multi-dimension, Kim et al. [3] extended
the one-dimensional monotonic condition to two-dimensional problem and presented the two-
dimensional limiting condition successfully. With the limiting condition, a multi-dimensional
limiting process (MLP) is proposed which gives more accurate results for two-dimensional
Euler and Navier-Stokes equations. It was the approach which prompted the work of the
present paper. Basically, it extends the idea of MLP to three-dimensional problem. Thus, in
this paper, we introduce a three-dimensional limiting condition and present the numerical
investigation of test cases which include complex physical phenomena.

MLP FOR THREE-DIMENSIONAL FLOWS

After the three-dimensional limiting condition is applied, the general form of MLP is
written as follows
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where B determines the type of limiting and ¢ is the multi-dimensional restriction coefficient
as follows.
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It is noted that « is a function of multi-dimensional flow parameters such as flow angle,
cell-aspect ratio and local slopes.

NUMERICAL RESULTS

Here, we consider the three-dimensional normal shock discontinuity in order to investigate
the shock-capturing characteristics of TVD MUSCL limiters and MLP. This test shows the
advantages of MLP clearly in terms of monotonicity and convergence.
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Figure 1. Density contour and error history : van leer limiter
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Figure 2. Density contour and error history : MLP-van leer limiter
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