340 - Enhanced performance of polymer solar cells with PSSA-g-PANI/graphene oxide as hole transport layer

Seunghwan Bae1, bsh10000@snu.ac.kr, Heung-su Park1, Jae Woong Jung1, Jea Uk Lee2, Kyung Tae Kim1, Won Ho Jo1. (1) Department of Materials science and engineering, Seoul National University, Seoul, Republic of Korea, (2) Composite Materials Research Group, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831, Republic of Korea

We have synthesized PSSA-g-PANIs which are self-doped conducting copolymer and then prepared the composites with GO. When the transmittances of PSSA-g-PANI and its composites are compared with that of PEDOT:PSS, PSSA-g-PANI and its composite with a small amount of GO (2.5 wt%, 5 wt%) show higher transmittance than PEDOT:PSS in the range of 450 nm to 600 nm, corresponding to the absorption range of P3HT. The electrical conductivities of PSSA-g-PANI and its composite are much larger than that of PEDOT:PSS. The device with the pristine PSSA-g-PANI shows higher PCE than that with PEDOT:PSS mainly due to enhancement of J_{SC}. When the composite with 2.5 wt% GO was used, the device exhibits the maximum PCE of 4.14%, which is 15% larger than the device with PEDOT:PSS.