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l. Introduction

Global analysis of economic equilibria for the purpose of counting the
number of equilibria has been one of the important tasks of general
equilibrium theories. Most of the analysis has relied on the mathematical
tools borrowed from differential topology. In applying the tools economists
have had to admit strong assumptions, two of which are differentiability
and single-valuedness of excess demand fuctions (Dierker 1972; Nishi-
mura 1978; Varian 1975; Yun 1981). If we look at the production sets
even with the convexity assumption, we find it natural that there are kinks
and flat pieces. Supply fuctions associated with these production sets are
non-differentiable and multivalued. Kehoe(1983) and Mas-Colell (1985)
concentrated on the problem of multivaluedness. They solved the problem
by introducing a single-valued function whose fixed points are equivalent
to the equilibria. Here, we solve both of the problems, non-differentiability
and multivaluedness, by constructing a Lipschitz continuous function
from which we develop an equilibrium index theory. We use generalized
Jacaobians for Lipschitz continuous functions defined by Clarke(1983) to
compute the equilibrium indices.

The content of the paper is as follows. In Section Il, we introduce the
model and construct a Lipschitz homeomorphism between an open sub-
set of the Euclidean space and the graph of the excess demand corres-
pondence. In Section llf, we use the homeomorphism to define regular
economies and prove that there exist only a finite number of equilibria in
such economies. In Section IV, we define equilibrium indices and prove
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equilibrium index theorem. In Section V, we examine the implications of
the equilibrium index theory to the uniqueness of the equilibrium, and
compére them with the existing results in the literature.

iI. Economies with Convex Production Technologies

We describe the consumption side of the model by individual demand
functions d: P X R}, — R¢*! such that p-dip, w) = w, i =
1,...,n. Here, P is a subset of the ¢ + 1 dimensional Euclidean space,
R‘™ such that RYT! © PCR{™\{0}, where R{T! = |xe
Rt x>0 vi and R{P ' =ixe RCTLx 20, Vil Lletg =
Rﬁ“ be the initial endowment of consumer / for all i = 1,...,n. Since
we wish to concentrate on developing an equlibrium index theory applic-
able to economies with wider class of technologies, we admit the foliowing
rather strong assumption on the demand side.

Assumption 1 (Lipschitz Continuity)

For ali i = 1,...,n, d; is Lipschitz continuous, i.e., for all {p, w) € P X
Rl there exists & > O such that (', whe P X R} H PAwde
P X Rl. and II(p%, w}) — (p% w?)ll< & implies

I dip!, w)) — dip? wA Il < K Il (pY wh) — (p2 wdll, for some K
> 0.

The following assumption is standard.

Assumption 2 (Homogeneity)
For all / = 1,..,n, dlto, tw) = dip, w) for all t > O.

We describe the production side by individual production sets, Y; C
R ™, j=L.m letY = 3V,

Assumption 3 (Possibility of No Production)
0= Yforalj=1..m
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Assumption 4 (rreversibility)
Y n(=Y) = 0.

Assumption 5 (Free Disposability)
Yy — R{T Y

Assumption 6
Y is closed and convex.

Let an economy, £ = {(d, &), (Y})}, be given. For all j = 1,..,m, we
define the individual supply correspondence s;; P — R¢T1as

s0) = ey lp-y;zp-yforaly < vt
Let
7;(p) = p-sip) and wlp) = p-eg + Fzml 4;p),

where @ is consumer i's share of producer J's profit such that 0 < ¢
<land 5 ¢; = 1. And let

M

s(p) = X (o), dip) = 3 dip, wlp), e = X ¢ and

z(p) = d(p) — s(p) — e

The multivalued map, zz P = R**% will be called the excess demand
correspondence.

We say that p* & P is an equilibrium price of the economy, E, if there
is z < Osuchthat z e z(p*), where z(-) is the excess demand corespond-
ence for the economy, E. An equilibrium price, p*, is called a boundary
equilibrium, if p* is on the boundary of P.

z(p) is nonempty and convex for all p = P. But it may not be compact.
However, we may assume without loss of generality that z(p) is compact,
when we concentrate on studying the properties of equilibria, as can be
seen in the following. Choose a constant C such that, if y, & ¥, for all j and
Sy = dp) — e, then Iy Il < C (see Lemma A.2 in Smale 1982). Let ¥,
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=Y, NiveRT | Ivi<Cland £ = {d, e) (V). Wecall £ the
false economy of E, and denote the corresponding supply and excess
demand correspondences as §'s and 2 Then both £ and £ have the
same set of equilibria. For, if p* is an equilibrium of £ then there exists
yY = §(p*) for all j such that d(p*) — e — 2 y% < 0. And by the
convexity of ¥’s and the construction of ¥;'s, y] = si(p*) for all j. So, p*
is an equuiibrium of E. The converse is obvious by the construction of Y,s
Hence, we assume without loss of generality that z(p) is compact for all p
e A.

The excess demand correspondence, z: P —R‘ T, has the following
properties. It is upper semi-continuous and its values are nonempty,
convex and compact. Furthermore, we can show tha-t p-zip) =0 which
is the so-called Walras law. We need the following assumption on the
excess demand correspondence.

Assumption 7 (Boundary Condition)

i) limsup inf ig Z |z € Zp*)} = oo, for all sequences, (p*) in P
such that p* — p = RLFI\ P

ii) There is no boundary equilibrium.

Let g be a ¢ -dimensional vector. We shall use capital letters to denote
the reduced maps defined in the following. Let IIj(q) = 7(q, 1), D(q) =
[xe R’ | (%, x,41) = dlg, 1) for some x,,, = RY,and §(¢) = {¥
e R |(y,y,+1) € s{q, 1) for some y,, , = RY} . Let S(g) =Z{5}(q)
and Z(q) = Dlg) — Slg) — €. Here, € is the vector consisting the first
¢ coordinates of e. Note that S(g) = |y= R?|(V, y,+1) € S(g, 1) for
some y, +1 € RY and Z(g) = {2 = R¢| (2, z, 11) € 2(q, 1) for some
z,+1 € R'l. We also note that (g* 1) is an equilibrium if and only if
0 = Z(g*). This is so by the Walras law and ii} in Assumption 7.

Let 2 be a ¢-dimensional compact manifold with boundary. And let
C(£2) be the set of all upper semi-continuous correspondences from 2
to R¢ whose values are nonempty, convex and compact, and whose
zeros are not on the boundary, i.e., 0 & f(o Q) for any f = C(02). We
say that f is homotopic to g in C(£2), denoted by f = g, if there exists an
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upper semi-continuous correspondence H: 2 X [0, 11 — R? such that
H = H(-,yedn) foralt [0 1], Hp= fand H; = g For a
single-valued function f = C(2), let deg(f, 12, 0) denote the topological
degree of fwith respect to O (for a reference of topological degrees, see
Lloyd 1978). For a correspondence g & C({2), we define the degree of g
with respect to O as deg (g, 02, 0) = deg(f, 2, 0), where fis a single-va-
lued function homotopic to g. The degree is homotopy invariant, i.e., two
maps have the same degree if they are homotopic to each other (see
Ma 1972).

Theorem 1

Under Assumptions 1-7, there exists (2 < R/, diffeomorphic to an
¢ -dimensional closed disk, such that g* = Int 0 for all g* with 0 =
Z(@*) and that deg(Z, n, 0) = (—=1)¢.

Here, Int 2 is the interior of 2. Let A = {pe P| ’Eﬂpk =1,4°
= peRY | S p=1ad d=lpcri* |5 p =1,
Let ¢ be the centke'rl of A, ie, c=(1/(g+1),...1/(¢ +1)). Define a
fuction 7 : A—R‘*'and a correspondence @ : A—R’ T by 7 (p)
=p —cand wlp) = (P21, P22y, Py 412¢+1) | 2 € 2(p)}. The
values of 7 and « are in fact in the tangent space of A°(at any p =
A°), and « isan upper semi-continuous correspondences. We use the
following lemma for the proof of Theorem 1. Let £* denote the set of
equilibrium prices in A.

Lemma 1

There is a convex subset G of A, diffeomorphic to an ¢ -dimensional
closed disk, such that

)c e Int G

iyE*C Int G

i) ¥V Ny i+ e/ el foral p e G and all @ € «(p).

Proof of Lemma 1
Construct a sequence of subsets, {G*}, G* < A° such that 1) each
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G * is convex and diffeomorphic to an ¢ -diensional closeddisk; 2) c = G*
c G**'forall v;and UG = A"

Then, we can find » such that G* has properties i) and ii) for all »
2 v . For, if not, there is a sequence in A°, {p”}, such that p* — p =
A and 0 e z(p”) forall . If p = A\ A, then the first part of Assump-
tion 7 is violated. If p & A, then O = z(p) by the upper semi-continuity
of z. So, the second part of Assumption 7 is violated.

Suppose that for all » = v there are p*= 9G* and z” = z(p*)

satisfying
ypt) @’
Iy ) lle “I

where w* = (pyz{,..P/+12,4+,) = w(p”). We may assume
without loss of generality that p* — p = A\ A ° Taking the dot product
of z* with both sides of the above equation and rearranging, we obtain

+

Szr= —(p 4 MP_TCl L v

hew *|
Hence, p = A\ A° by the first part of Assumption 7. Thus, « */
lw “l = (p—c) /i p—c . In-particular, fork & | = {k|px= Ol brz}/
Hew *| — —71—1/ lp—ci. By the upper semi-continuity of zat p,
1z*} is contained in a compact set, and hence has a convergent subsequ-
ence denoted {z7}. Then, for all k = |,

p/? z7 . —Ue+D

e 71 Itp—c |

and z7 - z = z(p).

This is possible only if z, < O for all k = /. Since we assumed the

absence of a boundary equilibrium in Assumption 7, this is a contradic-

tion. Hence, there is a v~ such that G* satisfies all the properties in
the lemma. Llet G = G*"

Q.E.D.

Let Proj: R!‘"' — R’ be defined by Proj(x;,X,...X, +;) = (X,

X,...,X,). Proj(x) is denoted by x. Then, p = Proj(p), ¢ = Projlc), E* =
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Prof(E*),and G = Proj(G). Also, let w(p) = Projflw(p). This is well-
defined because pand p have one-to-one correspondence with each
other in A.

Proof of Theorem 1
Observe that G is diffeomorphic to an ¢ -dimensional closed disk and
contains ¢ and £ in its interior. For t & [0, 1] let

Hp, t) = —ty(p) + 1-taw ().

Here 7(p) = (5—C). Observethat p & o Gimpliesthat (—¢) i p—¢ Il
+ w/llwll forall @ € w(p). Note also that H is upper semi-cont-
inuous and H( ., t) is compact, convex valued for all ¢ = [0, 1]. So, H
defines a homotopy between —» and « in C(G). Thus we have that

deglw, G, 0) = deg(—7, G, 0) = (—1)°.

Now, define @ :G— R{, by #(p) = pl(1—2 p. Let #(G) = .
Then, ¢ is a diffeomorphism onto (2. Let a?(q) = w(® " Yg). Then,

deglw, 0, 0) = deglw, G, 0) = (—1)¢,

since |Dg~Mg)| > 0 forall § € 0 (see Theorem 2.3.1 in
Lloyd 1978). Because Z(q) = z(p) and ¢ = # (), we may define a homot-
opy between @ and Z in C(2) by

é@ 0 = |tpzy + (1-0z,...t6,z, + (1-1z,) |z & Z).
Thus,

deg(Z, 0, 0) = degle, 0, 0) = (—1)°.
Q.E.D.
We now define generalized Jacobians of Lipschitz continuous functions
as in Clarke(1983). For a Lipschitz continuous function - R¢ — R"
the generalized Jacobian of f at x, &f(x), is defined by

ofix) = collim Df(x*) | x* — x and x” & N{.

Here, co is the convex huli, N; is the set of points at which f is not
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differentiable, and Dfix*) is the usual Jacobian matrix at a differentiable
point x*.

Since profit functions, s, are Lipschitz continuous (see Proposition
2.2.6, Clarke 1983), we can use the generalized Jacobian of 7; to extend
the Hotelling’s lemma to non-differentiable cases.

Proposition 1 (Generalized Hotelling's Lemma)
sp) = axp) foral p = R{L'and all j.

Proof
Let y = s(p) and g(p) = #p) — p’-y. Then, ¢ is Lipschitz
continuous, g(p’) = Ofor all p’, and #(p) = 0. Hence, 0 = 3 #(p) =
8 n{p) — y (see Proposition 2.3.2, Clarke 1983). Thus, y = anip).If x;
is differentiable at p, then & 7(p)=Dx (p)=s{p), and s; is single-valued
and equal to D ;(p). Suppose y = limDx{p*) = lims{p*), as p* — p.
By the upper semi-continuity of 5, y & s(p). Since & 7 (p) is the convex
hull of {lim Dxi(p*) | p*—p} and s(p) is convex, 3 7p)  s(p).
Q.E.D.

Corollary 1
S(@) = omq) forall g & R{, and all j.

Proof

If y e S(q), then there exists y, ., € R'such that (y, y, 1) = s(q).
Let #(@) = O{q@) — q"-y — ¥,+1. By the same type of argument
used in the proof of Proposition 1, we obtain y & 8 II{q). On the other
hand, by the proposition2.3.16 of Clarke (1983), 2 I1,(q) = 8, 7;{g, 1) C.
Proj 8 #(q, 1) = S(q). Here, 8, 7 is the generalized Jacobian of x;
with respect to q.

Q.E.D.

From the definition of s;, it is easy to derive the following well-known

property of s

y' e 5" and y2 e s(p? imply (' — yA - (p'=p? = 0.
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We say that a correspondence is monotone if it has the above property.
We note that §; and S = 3 5 are also monotone.

Now, consider the followin/g maps, f and g, defined below. Gr(S) and
GrZ) denote the graphs of correspondences S and Z, respectively.

Gr2) « GnS) - U = gGrS) < R?
(g DQ)—y—€) — (q y) —q + Yy

Since D(q) is a Lipschitz continuous function, it is easy to see that f is a
Lipschitz homeomorphism, i.e., f is a homeomorphism, and f and its
inverse function are Lipschitz continuous. We now show that g is also a
Lipschitz homeomorphism.

Lemma 2
g is a Lipschitz homeomorphism.

Proof

Suppose ' + y' = g + y2 Then, (@' — g% = —(y' — y?). By the
monotone property of S, (¢! — g% - (y' — ¥y =—(y'—y?? = 0. Thus,
q' = g%and y' = y2 This shows that g is one to one. g is a restriction of
a differentiable function on Gr(S) and is Lipsctitz continuous. Now, sup-
pose (q', y") = g7'(u') and (g% y?) = g u?. Then, u' = q' + y'
and u? = q°+y? by the definition of g And,

lu' — w212 = 1lg'—=q? 12 4+ ly'—y2i1? 4+ 2g'—g? -
(y'=yH > llg'—g® 13+ ly'—y?y?
=g, y) — @3 yA1?

The above inequality is the result of the monotonicity of S. Thus, g lis

also Lipschitz continuous.
Q.E.D.
From Lemma 2 and the comments preceding it, we conclude that h:U
—Gr(2) defined by h = fog~'is a Lipschitz homeomorphism. Let B;(g*)
be the open ¢ neighborhood of g* and B,;(g*) and 8B,(g* be its
closure and boundary, respectively.
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Lemma 3
Let B;(g*) © Rf, and define A(g*, ¢)byAlg* &)=1g+y|ye
S(g) and g = Bs(g*). If y* e S(@*), then B;(g@™) + y* < A(g*, &).

Proof

Choose any ¢ € B,(g*) and define

a(@) = q + S0 — G — y*, and

A@ =qg—qg*
for g = B,(q*). We show that a is homotopic to £ in C(Bs(g*). The
homotopy is given by

Hig t) = tg(q) + (1-ta(q), for all t = [0, 1].
Now consider

Hig, 8- Alg)={tlg—g*ll 2 + (1—tg—g* - (y—y*)
+(1-dlg—q) - (q—gq*) | yeS@) .

If g = 8B4(g"), then each term in the above expression is non-negative,
and either the first or the third term is positive. Thus O ¢ H(q, 1) for all ¢
e [0, 11 and all g & 8B4(g"). So, degla, Bs(g*), 0) = deg(p, B,
(g%, 0) = 1. We conclude that there is ¢” = B;(qg*) such that 0 = «
(@) = q +S@) — G — y* Thatis, ¢ + y* € ¢ + S(@".

Q.E.D.
We note that Lemma 3, in particular, shows that U = g(Gr(S)) is an open
subset of R*.

i1l. Equilibrium Index Theory

We introduce a concept of transversal intersection between a Lipschit-
zian manifold (Gr(Z)) and a smooth manifold (Rf, X 0). GH2) is
transversal to R{, X O(denoted Gr2) MR{4: X 0), if (g 0) e
Gl N RY, x Qimplies ImJ + R X 0=R’! xR’ for all J e
ahth~'(g, 0)). Here, Im J is the image of the matrix J. There is, as yet,
no result available in the literature stating that the above concept of
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transversality is generic in some appropriate sense. Note, however, that
this concept of transversality reduces to the usual one when Gr(Z) hap-
pens to be smooth.

Assumption 8 (Transversality)
G2y M R¢, x 0.

Let b, hp: U — R be such that A(u) = (h(u), hy(u)). Given J = &
h(u), Jmay be written as J = [j‘] where Jy, and J; are ¢ X ¢ matrices.
2

Lemma 4
GO MRL, x O if andonlyif |Jy| = Oforall J & ohth~ g,
0)) whenever 0 € Zq).
Proof
Let e’ denote the ¢ -dimensional column vector with 1 in the i™ coor-
dinate and O elsewhere. Then, ImJ + R¢ x 0 = RY x R if and only
if [g] i=1,.¢ and Jeh, i =1,..., ¢, together span R’ x R. This is
equivalent to
1/ I = |J| =0
J2

Here / is the ¢ -dimensional identity matrix.
Q.E.D.
The above lemma may suggest that we work with the condition that O
€ Zq) and K & ahyth~'(g, 0)) imply | K| = O. It is likely that this
condition is equivalent to the above transversality condition. This equiva-
lence, however, is an open question and we continue to use the charac-
terization in Lemma 4 (see the discussion on page 71 in Clarke 1983). It will
be shown later that, when Z is differentiable at an equilibrium price vector
q, the above transversality condition reduces to the usual one: | DZ(q) |
= 0.
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Proposition 2
Under Assumptions 1-8, there are finite number of equilibrium price
vectors.

Proof

By Theorem 1, there exists an equilibrium price vector g and all the
equilibrium price vectors are contained in the compact set 2. We show
now that every equilibrium price vector is locally isolated. Let H: R¢ X R*
— R X R* be defined by H(v, u) = (h(u) + v, h(w). If 0 € Zq)
and h (g, 0) = u, then

SHO, u) = {[g J ]IJ eah(u){.

By Assumption 8, L € 9H(0, u) implies |L| # 0. And by the
inverse function theorem involving Lipschitz continuous functions (see
Theorem 7.1.1 in Clarke 1983), H maps a neighborhood of (0, u)
homeomorphically onto a neighborhood of (g, 0). If there exists {g *} such
that g* # g, q* - gand 0 = Z(g*) for each v, then h~(g*, 0) = v*
converges to u = h~%(g, 0). By choosing v = g — hy(u”), we note
that (v*, u*) = (0, u) and H(v*, u*) = (g, 0), yielding a contradiction.
Thus, each equilibrium price vector is locally isolated, and the proposition
is proved.

Q.E.D.

For an economy E, we define the index of E (denoted ¢¢) by ¢ =
deg(Z, n, 0). By Theorem 1, ¢ = (—1)* for every economy E satis-
fying Assumptions 1-7. Suppose ¢ € E* is an isolated equilibrium price
vector for the economy E. Let B;(q) < R{, be the open & neighbor-
hood of g whose closure, Bs(q), does not contain any equilibrium price
vector other than q. We may define the (local) index of q denoted by ¢4
as ¢, = deglZ, B (g), 0). This definition is independent of the choice of
¢ . By the index sum theorem (see theorem 8.1 in Ma 1972), ¢ = =

= (—1) for the economy £ with a finite number of isolated equuhb-
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ria. Hence, we observe that there is a unique equilibrium price vector, if
tqg=(=1)¢ for all g € £*. For an economy satisfying the transversality
condition, the index of an equilibrium price vector can'be computed in
the following manner.

Theorem 2
If Gr(2) is transversal to Rf, X O at (g% 0), then
tqy = Sign |Jp| for any J & ah(u*), where u* = h~'(g* 0.

comment: Since gh(u*) is a convex set of matrices and J e ah(u™)
implies | Jo | # 0O, the sign of | J, | is invariant over J & ah(u”).

Proof
Fix any J € 9h(u*). Given & > 0 such that B;(g*) < R{.4 we
define:

2(q) = Jolg — g*) and g(q) = hy(q + y*), where y* = D(@*) — &
We first prove:

Step 1: @ is homotopic to g in C(Bs(g*)) for some small enough & > O.

For each t = [0, 1], define

Hg t) = (1 — Bhlg + y*) + thg — g%, and
Flv, g & = Hlg, H + (v, 0), where v = R®.
Now, fix t. Then,

K1]|

K, X
K, | e aqHa* b).

oF0. a5 0 = | X
2

Here, 94,H(g* B denotes the generalized Jacobian of H with respect to
g. We note that

dqH(q", B = (1-t)ahl@* + y*) + tJ < ahl@™ + y*.

The above inclusion follows since J € ah(u*) and gh(u™) is a convex
set. Thus, all matrices in 8 F(O, g*, f) are non-singular by the transversal-
ity assumption. The inverse function theorem applies and f is a Lipschitz
homeomorphism. By shrinking the neighborhood of (0, g*), if necessary,
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one can find a local Lipschitz constant ¢ > O such that

WAy, q ) — FIO, g%, Il = clitv, g — (0, g) Il = clig —qg*ll,

for all (v, @) in the neighborhood of (O, g*). If we choose a sufficiently
small &, > 0 such that lg — g* Il < &, implies that (H,(g* B —
Hi(g, B, @ is in the neighborhood of (O, g*), then we have

T Hx(q, D1 IlHy(g*, 1) — Hxg, B I
= WFH (@ ) — Hig B, g B — FO, g% Hl

>cllg — g*l.
Thus,
Hy(qg, t) = O for all g = B, (g*) with g = g~

We now show that there is & > O such that

Hy(g, t) = O for all g B,(g*) with g = g* and for all t = [0, 1].
Suppose not. Then, one can find (g%, t*) € R{, x [0, 1] converging
to (g* t*) such that g* = g* t* = [0, 1] and Hy(g*, t*) = 0.
Rewriting the last equation and dividing by llg” — g* ||, we have

(1 —thlg” +y*) +tHq” —g"
lg* —qg*ll

+ (=)

hiqg*+ y)— Aqg* —q?
hg” —q* 1

The fraction in the second term is bounded by the Lipschitz property of
h, and J. Thus, the second term converges to zero vector. So, the first
term also converges to the zero vector. But we saw that 11 Ha(g, t*) 1t/ I1g
— g* Il = c for all g close enough to g* Thus, a contradiction.

Step 2. ¢ is homotopic to Z in C(B4(g™).

Lemma 2 showed that g: Gr(S)—U, defined by glg, y) = g+ y, was a
Lipschitz homeomorphism. Lemma 3 showed that, if y* e S(g*) and B,
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(@) Cc R{,, then B;(g") +y* c g +y| g €B;(@g) andy e

S(g)}. Given t « [0, 1], tS is a monotone correspondence. Following

exactly the same arguments as in the proof of the lemmas, we can show

that, for t > O,

a) g: Grn(S) — U, defined by g{g, y) = g + ty is a Lipschitz
homeomorphism, and

b) y* € S(g* and Bs(g*) < R{ , imply B;(@") +t&* < lg+ty| ge
B,(@" and y = S(g)}.

Let y* = D(g*) — é = S(g*). We now define H: By(g*) x [0, 11 — R’.

If t > 0O, H(g, t) is defined as a composition of the following maps:

—1

& , - ,
g t) — g + ty* 2, @q,y)— D@) — & — .

This map is well-defined by the observations made in the above. We
define H(g, 0) = Z(q). We show that H defines a homotopy between ¢
and Zin C(B 5(q*). We first observe that H(g, 1) = holg + y*) = #(q).
We now show that 0 & H(g, ©) if ¢ = g*. This is obvious when t = 0.
Suppose t > 0. Suppose also that g ~'(g + ty*) = (g’, y") and D(g") —
€ — y = 0. Then, ¢° = B;(g*) by the observation b) in the above.
Since g* is the only equilibrium price vector in B;(g*), g* = q". Then, y’
= y*. By the definition of g, g = g* So, we conclude that 0 € H(g, 1)
whenever g # g~

it remains to show that H is upper semi-continuous. Since the image of
H is contained in a compact set, it suffices to show that it has a closed
graph. But this follows immediately from the fact that the correspondence
I definedby I'(g, ) = {q", )| ¢ +ty =g + ty*and y" e S(@")}
for (g, ) & Bs(g*) x [0, 1] has a closed graph.

Since deglJ,, B,(q), 0) = sign | J, | for a non-singular linear map
J> (see Lloyd 1978), the proof of Theorem 2 is now complete.

IV. Some Examples of Economies and the Uniqueness of an
Equilibrium

We consider some economies for which we may compute the indices
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more_explicitly and derive conditions under which these economies have
unique equilibria. Let ¢g* be an equilibrium and u* = h~(g* 0)
throughout the section.

First, we consider a differentiable economy for which the demand and
supply functions are single-valued and differentiable. For such an eco-
nomy, ha(u) = Z(q) = D(q) — S(q@) — & where q satisfies g + S(g) =
u. By the implicit function theorem, we may derive:

Dh, = DZ (I + DS)~".

We know that / + DS is positive definite. Hence, the index of g* is the
sign of | DZ(g*) | . Thus, there is only one equilibrium if | DZ(g*) | has
the same sign for every equilibrium g* « E* Compare this with the
result in Yun(1981).

Second, consider an economy for which the supply correspondence is
multi-valued and h is differentiable at u*. We say that the supply corres-
pondence has a k-dimensional jump at g*, if the dimension of S(g*) (i.e.,
the dimension of the linear span of S(g*) is k. If the supply has a ¢
-dimensional jump at g* then there exists an open neighborhood, B, of
(@*, y*) such that g = g* for all (g, y) & B N GnS). So, in a neighbor-
hood of u*, we have

Mu) = (g%, D@ —y — & qg* +y = u
= (g% D@") +qg* — u — é).

Thus, ¢q» = sign |J, | = sign (=) = (=1)¢. So, there is a unique
equilibrium if the supply correspondence has a ¢ -dimensional jump at
every equilibrium. We now consider an equilibrium g* at which the supp-
ly correspondence has a k-dimensional jump with k < ¢. In particular,
we concentrate on an activity analysis model where k production activities
are active. Let x = R{ , represent the levels of the k production activi-
ties, A be an ¢ X k activity matrix with full column rank, and A! be the
transpose of A. Then, generically, we can choose an open neighborhood
B of u* = g* + y* in U such that any (g, ¥) « g '(B) can be
represented as
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y = Ax and Alg = 0,
for some x & Rk . Hence,
hy(u) = D(q) — Ax — & g + Ax = u and Alg = 0.

Assume h; is differentiable at u*. Note that a Lipschitz continuous func-
tion (in particular, h,) is differentiable almost everywhere (see Clarke 1983).

Differentiating the last two equations and solving for dde and d‘?, we get:
B pam =t and 99 _ ) aam-at
= A(AA) " and = I — A(A'A) AL
Then,
dh2 dabD tay —1 tay —1at
G = dg (I — A(AA)TIAY) — AAA) AL
By Lemma 4 in Kehoe (1980),
, dh, , o,
tqr = sign | ——=| = sign | dq
At 0

Compare this to the result in Kehoe (1980).
Third, we consider an economy for which the supply function is sing-
le-valued and Lipschitz continuous. For such an economy,

© hw) = (g, Z(@)) where ¢ + S(@) = u.

Let G(g, u) = g + S(q) — u and Ng be the set of (g, u) at which G is
not differentiable. If (g, u) & Ng, then DG(q, u) = [/ + DS(g), —/1. So,
2G(g*, u”) is the convex hull of the limits of the form [/ + DS(g), —/1
and | + DS(q) is positive definite. Thus, for all (K|, K;) e aG(g* u?*),
Ky is positive definite, and hence non-singular. So, by the implicit func-
tion theorem for Lipschitz continuous functions (see Clarke 1983), there
exists a Lipschitz continuous function g(u) such that G(g(u), u) = O for
all v sufficiently close to u* Hence, we can write h(u) = (g(u), Z(g{u)). If
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ue& Ny then u & N, and glu) & Ns. We have:

o | J & ahlu®) = co lim DZgw)) Il + S@uN~!| u— u*and
U & Np}

So, under the transversality condition,
tqr = sign | DZ(gw)) U + S(1~'| = sign | DZaq) |,

for some g = N; sufficiently close to g*. Hence, under the transversality
condition, if | DZ(g) | has the same sign around every equilibrium, there
is only one equilibrium.

Finally, we compare the approach in this paper to the one in Mas-
Colell (1985). Let v be an open subset of R¢ ' and 2: V — Y be the
orthogonal projection to Y. Mas-Colell defines a Lipschitz continuous
function i: V = R*%'as Alv) = (v} — dlv — £ (v), and observes
that p* = v* — p(v*) is an equilibrium price vector if and only if A(v*)
= 0. This function A does a similar role in his case as h does in ours.
Mas-Colell only considers the case where A is continuously differentiable
at every equilibrium. Aside from the fact that we consider a more general,
Lipschitz case, our approach may have some advantages in the study of
comparative statics. When the excess demand correspondence is allowed to
be multi-valued, it is difficult to do comparative statics with the system of
inclusion: 0 & z(p). Thus, it is helpful to construct an equivalent system of
simultaneous equations with the aid of such functions as h and A. The
Jacobian matrix (or the generalized Jacobian) of the system need to be
nonsingular, because an implicit function theorem is crucial in doing
comparative statics. But, observe that for the above system, A(v) = 0, the
Jacobian matrix DA is singular, since itisa (¢ + 1) X (¢ + 1) matrix
of rank less than or equal to ¢ . Hence, this system cannot be directly
applied in a comparative static analysis. By contrast, the Jacobian matrix
Dh is non-singular under the transversality condition for the system consi-
dered in this paper. Moreover, the index of an equilibrium is defined as
the sign of the Jacobian | Dh | . This sign is important in telling which
direction endogenous variables would move as an exogenous variable
changes. Hence, the index defined in this paper has a direct relation to
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the study of comparative statics. For an example illustrating this, see
Chapter 2 of Park (1988).
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