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Refreshing Distributed Multiple Views and Replicas

Wookey Lee* - Jooseok Park*™ - Sukho Kang™*

Abstract

In this paper we prescribe a replication server scheme with an algorithm DRF (Differential Re-
fresh File) to refresh multiple materialized views and replicas in distributed environments. Before
sending relevant tuples in server sites to client sites, an effective tuple reduction scheme is devel-
oped as a preprocessor to reduce the transmission cost. Because it utilizes differential files with-
out touching base relations, the DRF scheme can help to minimize the number of locks, which
enhances the system’s performance.

Keywords: Differential files, Materialized views, Master files, Screen tests, Semi —join.

I. Introduction

One of the famous dilemmas in distributed data base systems is to guarantee data avail-
ability as well as their consistency. For availability’s sake, data can be replicated in every
local site where needed. Data replication is necessary but burdens the system, since mutual
consistencies of those replicated data must be maintained. The schemes that uphold mutual
consistencies are generally addressed as follows: pessimistic locking, optimistic schemes, time
stamping procedures, and so on [2, 6]. The two-phase locking is the most widely employed
protocol in the distributed environments, and there are so many mechanisms suggested in

terms of 2PL: including site locking [1], cycle detection [17], site graph and global 2PL
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[4], and quasi-serialization [7], etc. The locking-based approach is certain but is liable to be
slow, since it results heavy transaction activities and can nearly bring the network down by
the sheer volume of messages sent among many dispersed replicas[19].

Materialized views are known to be a cost efficient alternative of data replications. Virtual
views do not exist physically, but materialized views are stored as a separate table. Itis useful
when users’ application may approve non-current or ‘near real time’ data, or need frequent
accesses with which the replication server can manage materialized views and various replicas
in distributed sites.

There are three kinds of strategies to make the materialized views up-to-date; immediate
updates [3, 5, 16], deferred updates [10], and periodic updates [10, 13, 15, 18]. The trade-off
between the currency of materialization and their costs are associated in choosing a strategy.
[10] and [14] addressed the timings of update quantitatively with a centralized DBMS and
distributed one respectively. Periodic updates can include immediate updates by setting the
intervals with no time lag to accommodate the refresh processes [8].

The simplest way to update the view is to re-execute the view definition, but it causes un-
necessary locks of those tables and inadmissible communication costs. Here, we adopt the dif-
ferential update method that does not reflect the whole base tables but the changed portion
only by using the log as a differential file, which relieves the difficulty of the concurrency con-
trol [9, 26]. Most studies of the differential update have not considered their distributed
environments. If ever, they are restricted to selection view (S-View) or selection-projection
view (SP-View). They do not support the materialized views or replica with differential
updates made by join or union operation (J-View) [8, 12, 13, 15]. Join operation is one of the
most time-consuming and data-intensive operations in relational query processing. It is import-
ant that joins be performed efficiently because they are executed frequently and they include
Selection-Projection operations. This study, therefore, deals with the structure of a replication
server to refresh differential and join materialized views and to support various kinds of
replicas (it also can embrace various fragments like vertical, horizontal, and mixed fragments

as well as peer copies, and possible to extracts and versions) in their distributed environments.
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II. An Architecture of Replication Server

1. The basic concept

A relational schema IR is a set of database relations and a relation R is an instance over
IR. Let R(TIDv, VTID, A, TSt) be a base relation” located at site S, where A, are data
attributes, and TID® is a physical identifier of the tuple and the VTID is employed in many
cases as the primary key of the base relation. The TID® and VTID are basically labeled by
DBMS. TS’ is the timestamp that the base relation was lastly changed by the committed
transactions.

Let R{ for j € Q be fully synchronized copies (replica) of R € IR and Q is a set of sites
denoted as an integer. (For the sake of convenience, the site identifiers are denoted two-folds
such that both j€Q and S; mean site j.) Views V1, «-- , Vn are materialized at remote sites,
and some of them are selection views (S view), some are selection/projection views (SP view)
and others are join views (SPJ views). The schema of view Vi :=(VID, S, EXP, A, LR,
NR;) where VID is view identifier; S; is the site where the view is stored; EXP; is the
predicate of view definition: A, is the set of attributes needed: LR; is the last refresh time;
and NR, denotes the next refresh time.

Example : Two tables are suggested as follows: SUPPLIER(VTID®, S#, SNAME, QTY,
P#) is at site 1, PRODUCT(VTID’, PNAME, COLOR, WT) at site 2. (Here the subscripts
s and p denote each tables, and mean that they are not equal though denoted of the same no-
tation.) A materialized view (V1) at site 3 is defined as followings:

CREATE MATERIALIZED VIEW V1 AS

SELECT SUPPLIER.SNAME, PRODUCT. PNAME, “Quantity=", QTY

FROM SUPPLIER, PRODUCT

WHERE SUPPLIER.P# = PRODUCT.P# AND QTY ¢ 80 AND COLOR {)Y;

A differential file is used to refresh materialized views and replicas, and has the following
schema: DF(VTIDY A, OP, TS’ PTS). Where the VTID? is the VTID of differential file DF
and the superscript d means that it can be different from that of the base bable R. But here
we assume that they are the same, ie, VTID’=VTID=VTID. The OP indicates types of the

operation to be done for each tuple: it will be one of three codes: ‘ins’, ‘del’, or ‘del,’ and

1) The term ‘base relation’ and ‘base table’ will be used without discrimination.
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‘ins,’ in series, where ‘ins’ means insertion, ‘del’ deletion, and a modification is depicted as
‘del,’ and ‘ins,’ in series with the same time stamp. TS’=the time the differential tuple was

appended(we assume TS’ is equal to TS’). PTS is the previous value of TS and it will be

Null, if it is newly inserted.

[TABLE2-1] Example tables: SUPPLIER, PRODUCT, and a materialized view VI

SUPPLIER
VTID* S# SNAME QTY PH#
1 S1 JAMES 60 P1
2 Sz . MARGOT 70 P3
3 S3 JUN 20 P1
4 S4 SIMON 40 P2
5 S5 MICHAEL 40 : P6
PRODUCT
VTID’ P# PNAME COLOR WT
101 P1 PIN G 200
102 P2 WASHER \Y 600
103 P3 BOLT R 300
104 P4 NUT G 700
105 P5 PIN Y 300
106 P6 WASHER B 200
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View V1 (Current Time 1:00)
SNAME PNAME GQY
JAMES PIN Quantity =60
MARGOT BOLT Quantity="70
SIMON WASHER Quantity=>50
MICHAEL WASHER . Quantity=40

An example of the differential file is suggested in [TABLE 2-2]. The changed (by committed
transactions) tuple and its operation codes(OP’s) are recorded with time stamp in series. (For
explanations sake, a record number is appended virtually, they are depicted at the right hand
side of the differential files.) For example, record number 1 and 2 mean that the QTY of tuple
S2 is modified from 50 to 70 at time 2:15 and record 5 means that a tuple {S4, JIM, 60, P3}
is newly inserted at time 3:00, etc.

The differential update scheme basically reduces communication costs greatly by sending dif-
ferential files to the relevant sites instead of sending huge base tables. Here we want to re-
duce the contents of the differential files much more through the tuple reduction procedure de-
scribed below. The reduction procedure and multiple query optimization technique are
addressed in [3, 11, 13, 19, 22].

The tuples that have passed the reduction process are pipelined to a procedure that appends
a file, called Master File, having the following schema: MF(VTID, A, OP', {Site, VID}), where
OP’ indicates types of update to be done for each view or replica in the list {Site, VID}. The
superscript v means that the operation codes of a differential file are integrated so that they
may be different from those of the differential file itself. A, is the relevant attributes: it will
be Null when OP’ is ‘del’ (since the remote view needs only a VITD for a deletion); the
inserted data item of A, will be denoted as OP* is ‘ins’, and the modified data item will be
‘mod’. In case of modification we will assume that A. = {A,=Value;} where A, is the name of
the modified attribute and Value; is its new value.

The Replication Server Scheme covers all the procedure that captures the changed data from
the active log and creates a differential file, and compresses the tuples through the reduction

procedure, and finally serves the update needs of the client sites. See [Figure 2-1].
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[TABLE 2-2] Example Differential Files

(a)Differential File of SUPPLIER

VTID* S# SNAME QTY P# OP TS PTS  (record number)
2 S2 MARGOT 50 P3 delm 2:15 1:30 1
2 S2 MARGOT 70 P3 insm 2:15 1:30 2
4 S4 SIMON 40 P2 delm 2:20 2:00 3
4 S4 SIMON 50 P2 insm 2:20 2:00 4
6 S6 JIM 60 P3 ins 3:00 Null 5
2 S2 MARGOT 70 P3 del 4:45 .2:15 6
4 S4 SIMON 50 P2 delm 5:08 2:20 7
4 S4 SIMON 60 P2 insm 5:08 2:20 8
6 S6 JIM 60 P3 delm 6:43 3:00 9
6 S6 EUGENE 60 P3 insm 6:43 3:00 10
7 S7 LEE 40 P3 ins 7:00 Null 11
8 S2 MARGOT 80 P3 ins 7:12 Null 12
6 S6 EUGENE 60 P3 del 8:40 6:43 13
(b)Differential File of PRODUCT

VTID? PH# PNAME COLOR WT OP TS PTS
105 P5 PIN Y 300 del 3:15 1:00
103 P3 BOLT R 300 delm 6:10 0:30
103 p3 BOLT R 500 insm 6:10 0:30

. The Reduction Procedure

1. The Duplicate Elimination Procedure and the screen test

Several cases of standard screen tests were suggested in [3, 12, 20]. Blakeley et. al [3] con-
sidered that every tuple that is changed by the committed transactions should be tested to be
irrelevant or not through the view definitions so that it may take time very much.

Before sending all the tuples to the relevant remote sites, we reduce them in a (tuple) re-

duction procedure by the following 3 steps: a duplicate elimination process, a screen test, and



K TN Refreshing Distributed Multiple Views and Replicas 37

a post-screening elimination. (Replicas or the peer copies of the base table that should be
updated immediately, of course, need not this reduction procedure.)

At first, the duplicate elimination procedure exterminates all tuples with the same VTID
value in DF except only the first and/or the last. We need next definitions: A subsets of
views, SV={SV,, - , SV4, for k < n are refreshed at time t,. We divide the set SV into
mutually exclusive disjoint subsets SV, - , SV,, such that U, SV;=SV and all views of SV,
have the same last refresh time denoted by TR, that is LR, = TR,, for all V; € SV, The
set SV, ----- , SV, is ordered such that TR, { TR, { -+ { TR, and they are grouped by the
refresh time TR;. The set SV, is expected that at least of one cycle of refresh time units, TU,
are passed with no changes in the base table. If TR; { TYTS] where min(T{TS]) { TR, {
max(TYTS]) for k € {1, 2, - , n}, then set LT,=t, NT,=t,+TU, and SV:=8SV—{SV,, - ,
SV,} for V, € SV. This procedure eliminates all the tuples with the same VTID bacause each
VTID is uniquely endowed by DBMS and is not re-assigned again. The types of OP are lim-
ited one of the following 7(=2'—1) sequences: (1)ins: (2)del; (3)ins and del: (4){delm, insm};
(5){delm, insm} and del: (6)ins and {insm, delm}:; (7)ins and {insm, delm} and del.

The procedure scans the Differential File backwards from the last tuple group-wisely
delineated by TR;. Tuples between TR,., and TR,., are apparently irrelevant to views SV,
------ , SV, for these views had been already updated and thus the tuples in TR, < TYTS] ¢
TR, are selected as following 3 cases; whether the types of OP are (1)ins or insm, or (2)del,
or (3)delm. For ins, it is the first instance of DF with the same VTID value, then the pre-
vious tuples are not considered any more.

OP:=insm means that the tuple will be possibly the last one, thus it will be selected with-
out further scan of DF. In case of deletion, it is always associated with the last instance of
the VTID value, then it is divided by the following 2 cases: no treatment, if PTS < T,.:
select the tuple, if PTS ) TR, If the type of OP is delm, then the next 3 cases are possible;
If PTS < TR, no treatment: if PTS ) TR, it implies that this tuple does not have the
first VTID value according to the views SV, - , SV, and simply proceed with the scan;
otherwise, if TR, { PTS < TR;;;, £ TR,, this implies that the tuple has the first instance of
the VTID value in DF according to views SV, - , SV..

Example : DF tuples can be considered between time 2:15 and 8:40 and searched backwards.
At first, {S6, Eugene, 60, P3, del, 18, 9} has the OP:=del and PTS:=6:43, then record num-
ber=5 is selected but the number 9 and 10 are excluded, for they are duplicated with the
same VTID: number 12, 11 and 8 are included since the OP’s are ‘ins’, then the tuples num-

bered 3, 4, and 7 are excluded. the tuple numbered 6 has PTS:=2:15, thus record 1 and 2 are
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[TABLE 3—1] Differential File of SUPPLIER after the Duplicate Elimination Procedure

VTID’ S# SNAME QTY P# OoP TS PTS (record number)
6 S6  JIM 60 P3 ins 3:00 Null 5
2 S2  MARGOT 70 P3 del 4:45 2:156
4 S4  SIMON 60 P2 insm 5:08 2:20 8
7 S7 LEE 40 P3 ins 7:00 Null 11
8 S2  MARGOT 80 P3 ins 7:12 Null 12
6 S6  EUGENE 60 P3 del 8:40 6:43 13

irrelevant. The example DF and its results are in [TABLE 3-1].

2. The screen Test

The tuples that passed the duplicate elimination process are hanged by the screen test that
is the second process of the reduction procedure to exclude tuples to the view definition(here
we construct a screen tree). Screen Tests are addressed in [3, 10, 15]. The predicates are
evaluated to True or False.

Example: In the example differential file record number 12 is current but turned out to be

false and deleted, for it is out of the range in the view definition (QTY ¢ 80).

3. The Post Screening Elimination

After the screen test, the remaining tuples are sorted by the primary keys not by the
VTID (say, S#, for example), and they are requested to implement the third procedure,
named the Post Screening Elimination (See [Table 3-2]). In the procedure, some tuples are
ignored (if the OP:=ins and del in series), and some are unified (if the OP’s are delm and
insm respectiverly, then they are unified as ‘mod’ that menas modification). In case of del and
ins, they have different VTID values each other, but in reality they are the same tuple to be
modified.

Example: record number 6 and 11 are unified as one tuple described ‘mod’, and record
unumber 5 and 13 are ignored by the Post-Screening Elimination rules see [TABLE 3-2]: the
results of the Post-Screening Elimination are suggested with the new record numbers in
[TABLE 3-3].
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[TABLE 3-2] Post Screening Elimination Rules

Output of Screen Test Op by Post Screening
ins, del ignore
insm, del ignore
ins, delm ignore
insm, delm ignore
ins ins
insm ins
ins, insm* ignore
del del
delm del
delm, del del
del, ins mod
delm, insm mod
del, insm mod
delm, ins . mod

[TABLE 3—3] The final Differential File of SUPPLIER after the Post-Screening Elimination

VTID’ S# SNAME QTY PH# 0) TS PTS (record number)
2 S2  MARGOT 70 P3 del 4:45 2:15 1
4 S4  SIMON 60 P2 mod 5:08 2:20 2’
7 S7 LEE 40 P3 ins 7:00 NULL ’

IV. Updating Join Materialized Views

1. Immediate Updates

Immediate updates to the peer copy and some fragments (vertical or horizontal) can simply
be supported in the scheme of sectionll. There may by several methods to immediate updates.
When a transaction is committed, then it can invoke remote update to the replicas and
fragments by triggering or any stored procedures [5]. Another method is depicted in [3]. In
our scheme an alternative can be suggested by setting NR; := the commit time of trans-

action for replicas that want immediate update. In such an immediate update, it is fundamen-
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tally a matter of trade-off between the currency of the data and the system performance:. the
more local sites are concerned to the replicas (including join operation), the worse update ef-
ficiency of a replica, we can not, of course, use of the benefits of the reduction procedure de-

scribed in section II.

2. Updating join materialized views and replicas

After reducing the differential file, one of the important problems in the replication server
is how to reflect the changes of base tables to the views. Before sending the reduced tuples,
we can determine whether these tuples need to be referred to remote sites or not. The Selec-
tion views (S-View) and Selection-Projection views (SP-View) need not to be referred to re-
mote sites, and possibly sent to view sites directly. In Join (J-View), however, tuples are to
be sent to the pertinent sites and should be joined with the local data and then re-sent to
the view or replica sites.

In join operation, we consider two kinds of tuple changes: ‘ins’ and ‘mod’. Because the de-
leted tuples of DF are not to be joined, thus they are sent directly to the view sites where
the pertinent views are stored. If the type of the OP is ‘ins’, then they are sent to the join
site anew; they are to be transmitted to the related sites that the tables participated in join
are located. After being joined with the table, these tuples are appended to the relevant
materialized views. When the attribute used in join predicate is changed (in this case the OP
is ‘mod’), such tuples that contain these must be manipulated in the similar way, and at last
those tuples are updated to the views.

The relevant tuples to be joined will be collected at the site where the join is to be
performed. If the join operation is carried out by the tuples from several sites, then it is dif-
ficult to manage these tuples as one table, since the sizes of these tuples may be different
with each other. Thus we prescribe a new architecture called DRF (Differential Refresh File)
method. The schema of DRF is as follows: DRF(Site—ID, VTID, Au) where Site—ID is a
unique identifier of the site where the differential file comes from and Au is the attributes
that are used in join predicate, and it has internal pointers to connect the attributes of dif-
ferential tuple in the DRF.

When we make a join with DRF where the relevant relation is located. Without loss of gen-
erality, we here set R, be in site S; and R, in S, and the materialized view V3 in S, We also
assume here that Al of R, be a foreign key is related to the primary key, A}, of R;(A, be
called the r-th attribute if table i, but here we set merely A,). DRF; cannot be created in the
site other than S, If tuples are changed (deleted, modified, and inserted) in R, then the JDF;
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need not be effected any how. Because it will not trigger any new relationship with the tuples
of R. Even though there is a new insertion in both two tables simultaneously, join can be
performed merely by using DRF; only.

Once DRF; are sent to the site S, there are two strategies: if all the tuples sent from site
S, is matched with those of DFy;, then there is no need to search all base table of R;, reduc-
ing the processing time needed to join. If there exist at least one tuple of DFR; that does

not match with DFg;, then all the table of R; cannot help being searched.

[TABLE 4-1] The Final View(V1) at time 9:00

View V1 (Current Time 9:00)
SNAME PNAME QTY
JAMES PIN Quantity=60
MICHAEL WASHER Quantity=40
SIMON WASHER Quantity =60
LEE BOLT Quantity=40

Example: The final treatments by the DRF algorithm to the reduced tuples are as follows:
record 1’ (in [TABLE 3-3]) be sent directly to the view site and deleted: record 2’ and 3
are sent to site 2 to be referenced: then at first searching the Differential File of PRODUCT
and Joined(=new record number 3’); but there still remains no matched tuple(=new record
number 2’), then the base table of PRODUCT can not but be searched and to join the rel-
evant tuples. The final materialized view at current time(TR;):= 9:00 is in [TABLE 4-1].

3. JOIN Algorithm

We assume that table R, is in site i and R; in site j to be joined at site j for i#j. Here,
for convenience’s sake, we set A, be a foreign key of table R, at site i; it is relevant to a
primary key of table R, If T is a tuple, T[A,] denotes attribute A, of T and the

superscripted tuples T¢ and T® mean the differential tuple and the base tuple respectively. For
example, T¢[A,] indicates the attributes of differential tuple of table R, and TYTS] means its

time-stamp.

DRF Algorithm
1) Get TYA,] where TR, { TYTS] < t,
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/*Get the tuples that have the same refresh times*/
2) Do Duplicate elimination and Screen test and postscreening elimination.

3) Go to algorithm DRF —JOIN

{DRF —JOIN process)
Create DRF as for VA, Do:
DRF; [VTID] « T¢ [VTID]
DRF; [A,] « T{ [A]
DRF; [TS] « T¢ [TS]
DRF,; [OP] « T¢ [OP]
(1)deletion
If DRF; [OP]=: del
Send DRF, directly to site Sy /*No need to acess sitej*/
(2)insertion
If DRF; [OP]=: ins and 3 T{A] = T,[A] /*select Join attributes to send*/

Else stop:
Send DRF to site j
If T2 [A] = : TYA1] /*join DRF with the differential file of R*/

then J1 «— T?*®T¢ /*® means join operator*/
Else J2 «— T?FQT? /*join DRF with the base table of R*/
Send J1UJ2 to site Syr /*the results are sent to Master File site*/
(3)modification
If T?*" [OP]=:mod AND T/* [A/]#:T/[Al]
then send DRF; to site Sy /*f A/(foreign key)is not changed at i*/
Else do J3 (- T?*QT¢
/*There always exists the tuple in R, by the Referential Integrity Rule*/
Send J3 to site Syr

/*the results are sent to Master File site*/



AL B Refreshing Distributed Multiple Views and Replicas 43

V. Performance Analysis

1. General Notations

Q : the set of site index for i € Q={1, 2, .-+ , N

B : Page size (bytes)

SF : Semi join factor

Si, SMi : The site where Ri is located and the materialized view MVi is located

C00 Coomm : 1/0 cost (ms/block), Transmission rate (bits/s)

Hp g : Height of B+tree at Sj site

g, : Number of Ri tuples per page(=B/W;)

Proeg : Probability that all the tuples needed to join operation is in DFg;

f(N, P, K) : Expected number of pages fetched when accessing K out of N tuples in a
file occupying P disk pages [22]

Ui : Number of tuples in DFy

Ui° : Number of tuples in the result of duplicate elimination procedure in DF;.

Ui’ : Number of tuples that pass the screen test in DFy;

Ui’ : Number of tuples to be transmitted to the view site in DFy;

UM UPP, " . Number of tuples in R, DRF, and that are not joined with DF in DRF,
respectively

Oy Oy O : duplicate elimination factor, screen factor for view predicate, and
postscreening elimination factor respectively.

Wins, Wdel, Wmod : Width of MF tuples with OP = ins, del and mod respectively

W Wogg, W, Wi o width of R, tuple, DRF; tuples, materialzed view V, and B-+tree record

respectively.

2. Cost functions

If there is no algorithms to manipulate differential files such as DRF, we cannot help but
utilize base table methods to refresh views and replicas. Here we compared algorithm DRF to
the Semi-join algorithm (among various join schemes, semi-join was addressed to be preferable
for the distributed environments in [4, 6]). We expect that it is sufficient that the single up-

date of DRF file compared to the Semi-join, since multiple views naturally will show much
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better performances. In comparison, we consider communication costs, I/0 costs. (File holding
costs and computing costs are neglected, because it is so small that they can not be
computed. DB relations are stored in the costless Disks, and the portion of computing times
at the main memory is below 1% in the total cost.) But the I1/0 costs to the Disks are con-
gsiderable. We assumed here that R, and R; have clustered indexes on the attributes to be

joined.
(1)Algorithm DRF

In order to establish the cost functions, we first determine the number of tuples that pass
through each stage of the reduction procedures.

Ui =U, 1+ Uit Uigamt Usinem (Where Uiz =V suom)

Ui*=Uft Uliat Uldan T Ulinem = Uiins T Uizt 0(U o+ Ulinom)

U =Ult Uldat UltamUlim = (Ui Ut ) T Ub i+, Ul frim

Ui'=UlitUisat Ui = % Ulins T2, Ul 0, (Ulinsm+ Ul i)

The total cost in algorithm DRF can be divided by the site Si, Sj and Sm
Cost in Si=CIO0+CI01+CI02+CCOM1
CIO0=Cost of reading Ui tuples from the log=C; (Ut Uit U;ms) W/ B
CIO1=Cost of reading Ui tuples from DFyp=C; (Ut U;tU; i)W/ B
CI02=Cost of sorting U; tuples =C, ,2*UW,/B
CCOM1=Cost of transmitting DRF tuples to S, and SM;=8( U}, W, +U..uW 1sF U’ oW o) /
Coomm
Cost in SMi=CI03+CI04
CIO3=Cost of accessing the B-t+tree at the view site=C, o[ (Hp g, —1)+
f(ae,N,, ¢ N,W,/B, U")]
CI04=Cost of updating the data in the view table=C,,2*f(aN, aN,W,/B, U’)
Cost in S;=CI05+CI106+CI0O7+CI08+CI09+CCOM?2
CIO5=Cost of reading U, tuples in DFy=C; (Ut U, 0tU, i) W:/B
CIO6=Cost of sorting U; tuples =C, ,2*UW./B
CIO7=Cost of reading JDF, =C, ;*UpesW,,5/B
CI08=Cost of sorting DRF; by join attribute=C,,2*Uprs;W prr; / B
CI09=Cost of reading R, tuples for join operation with U™
=Prpp_g<Cy o[Hpy —1)+f(UM UMW, /B, U™}



/% BIE Refreshing Distributed Multiple Views and Replicas 45

CCOM2=Cost of sending joined tuple to SMi+Cost of sending the change of Relation Rj to
SMi =8+(U"»W,,../ C.omm+8(U’taW s+ UlasW o) / Coomm)
Therefore, the total cost of DRF(TCD) is CIO0+CI0O1+CI02+CI103+CI04+CI05+
CIO6+CIO74CI08+CIO9+CCOM1+CCOM2

(2)Algorithm SEMI—JOIN

{Semi —join algorithm)

1) Send the attribute of R, which is used in join predicate to site S; where R; is located.
(It is assumed that the size of R; is greater than that of R;)

2) In S; send the tuples of R, that are matched with the attributes of R, sent from S, to
S

3) In S; join R; with the tuple sent from S; and send them to the sites where materialized

views are located.

(3) Cost functions

Cost in Si=BIO1+BCOMI1+BI02+BIO3-+BCOM2
BIO1=Cost of reading join attribute index of Ri=Cj [ (Hs ;—1)+U"*W,/B]
BIO2=Cost of reading the tuples of Rj sent from Sj=C, ,*SF*U”W,/B
BIO3=Cost of reading Ri to join with the tuples of Rj =Cj*[(Hs-,—1)-+U%W,/B]
BCOMI1=Cost of sending the index to Sj==8+Ccomm*U**W,/B
BCOM2=Cost of sending joined tuple to the sites where materialized views are located.

=8sa *U%* Wmvi/Ccomm

Cost in Sj=BI04+BIO5+BCOM3
BIO4=Cost of reading indexes of Ri sent from Si=C, ,U*W,/B
BIO5=Cost of reading Rj=C, [ (Hz-,—1)+f(U¥, U*W,/B, SF+U¥)]
BCOM3=Cost of sending the tuples that match the join attribute of Ri in Si=8+«SF+U~»
W/ Ccomm

Then the total cost of Semijoin (TCB) is BIO1+BIO2+BI03+BI04+BI05+BCOM1+
BCOM2-+BCOM3.



46 Wookey Lee - Jooseok Park - Sukho Kang HRGEMS T

3. Performance Analysis

The following values are assigned to the parameters for analysis. «, is varied between 0.01
and 1.0. Let B=4000 bytes, Wy=W=200 bytes, WB=8 bytes, C,;,=25 ms/block, a,=0.6, o,
=0.6, Wins=200 bytes, Wdel=8 bytes, Wmod=100 bytes.

Assuming the above values and varying communication speed, we can get the total cost of
each algorithm. The results are depicted in [figure 5-1] and [figure 5-2]. They show that the
size of differential files is crucial because the total cost ratio is much more significant with
small differential file (10k) in [Figure 5-1] rather than in [Figure 5-2] (50k). There was also

a strong trend that the total costs became smaller and smaller as the communication speeds

went up.
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Figure 5—1 Total cost ratio I (TCB/ TCD) Figure 5—2 Total cost ratio Il (TCB/ TCD)

Then, it should be checked that what is the key components in cost changes as the com-
munication speed goes up. In base table manipulation, transportation cost’s portion is almost
up to 70% of total cost, and naturally it goes down as the communication speed increases.
Here, the cost to read each base table increased so much as the transportation decreased. In
differential file manipulation, there is no major component. IO costs of differential files are big
at each site, and still the transportation costs have some position but they are decreased as
communication speed goes up. In both two cases, the other components are trivial, since the
sums are under 10% at all the cases.

[figure 55] and [figure 56] show the communication cost ratio of the differential method
and that of the semijoin one respectively. They show that algorithm DRF consumes a much

smaller share of the communication cost than the semijoin, even if large differential files are



HUE FIR

Refreshing Distributed Multiple Views and Replicas

47

70

-—o&—— 8COM3
-—&—B105

—&—B8103
—3—SUM of the othars

60

AN

50

40

N

cost
ratio

30

) Z
*—

[V} e

0

o T Eay

100K

400k 7U0k ]
communication speed

—&—DI01
—&—DI04
——SUMof the others

—&Di05
—3—DI109

40

35
r

0 >

25

20

15 (¥}

cost ratio

10
5

0 N e
100K 400K 700K
communication speed

1

Figure 5—3 Cost Components in Semijoin

Figure 5—4 Cost Components in DRF

maintained (up to the half of base tables). Therefore the DRF scheme is practically meaning-

ful especially in the distributed environments. The transportation cost is an important factor

in both two cases. But even though the worst case such as ultra high communication and

huge DF siges situations, the DRF scheme still has some advantages.

Com costl

Figure 5—5 Communication cost ratio of DRF Figure 5—6 Communication cost ratio of Semi-Join
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VI. Summary

A Replication Server scheme with an algorithm DRF is addressed to update multiple views
and replicas effciently in a distributed environement. The peculiarity of this algorithm can be
summarized as follows: (1) The DRF scheme can reduce the transmission cost significatntly
by an effective tuple reduction procedure as a preprocessor before sending the relevant tuples.
(2) Using differential files, the DRF scheme can minimize the base table locks, enhancing the
systems’s performance especially for distributed enviornment. (3) Because it utilizes differential
files only that never touches base tables including in joining operations, the scheme can help
to realize the distributed database systems.

The performace analyses show that the total cost of this algorithm is closely dependent on
the number of differential tuples, the screen factor and the communication speed. As these
factors decrease, so does the total cost immediately. The proportion of total cost to trans-
mission cost in algorithm DRF is much smaller than that of semi-joins. Although in the
worst case scenario with such factors as 1) ultra high communication rate (say, 100000000
BPS) 2)mammoth differential file magnitudes (up to the size of the base tables) 3) no
screened cases the cost benefits are insignificant, the scheme still has some advantages. It is
the most important point in solving the complexity of distributed database systems that the

scheme can prevent the distributed transactions from °‘locking all’ the tables.
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