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We consider quasi-linear social choice problems. A society
must choose one among a finite number of costless public deci-
sions; money is available to perform side payments; each agent
has quasi-linear preferences. We are interested in determining
what public decision should be chosen and what side payments
among agents should be performed. By formulating monotonicity
and independence axioms relating various changes in the set of
public decision, we characterize egalitarianism.

I. Introduction

We consider the following class of quasi-linear social choice prob-
lems. A society must choose one among a finite number of costless
public decisions; money is available to perform side payments; each
agent has quasi-linear preferences (separably additive with respect
to the public decisions and money, and linear with respect to money).
The question is to determine what public decision should be chosen
and what side payments among agents should be performed.

An axiomatic analysis of quasi-linear social choice problems has
been initiated recently by Moulin(1985a). In Moulin (1985a), he pro-
posed various axioms concerning certain changes in the utility pro-
files and established characterizations of utilitarianism and egali-
tarianism. Following this pioneering work, Moulin (1985b) and
Chun (1986) proposed axioms relating solutions for societies of
different sizes and gave axiomatic characterizations of utilitarian-
ism and egalitarianism. In Moulin (1986), he introduced binary
quasi-linear social choice problems where a society is faced with a
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for any shortcomings.
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choice between two public decisions and characterized utilitarianism
and egalitarianism.

Here we formulate various axioms relating various changes in the
set of public decisions and characterize egalitarianism. The axioms
can be divided into two subgroups: Monotonicity Axioms specify
how the final utilities of agents change when the set of public deci-
sions is subject to some transformations, while Independence Ax-
ioms require the invariance of the final utilities in similar circums-
tances. Although this work was originally done by Thomson and
Myerson (1980) for bargaining theory, all of their axioms are re-
formulated to be suitable for quasi-linear social choice problems
and several new axioms are introduced.

The paper is organized as follows. Section II contains some pre-
liminaries and introduces the concept of a soultion and the basic
axioms. Section III presents various axioms of our interests. In
Section IV, the logical implications between these axioms are estab-
lished and a characterization of all solutions satisfying all these
axioms is provided.

II. Preliminaries

Let 94 be the (infinite) universe of “potential” public decisions and
S be the class of all subsets of f. Given A € 3, society N = {1, -
n} is supposed to choose an outcome (a, t) where a = A and t={(t, ),EN
is a vector of balanced monetary transfers across agents:
2 l,‘ = 0.
=N
Every agent i = N has “quasi-linear preferences” over the set
A X IR, so that his utility for outcome (a, t) is uifa)+¢.

Definition
Given a society N = {1,-+, n} and a finite set A of public deci-
sions, a solution is a function S: /R ' " — /R", which associates to

every utility profile u(A ) = (u(@ ))sea a vector Su(A)) = (S1(u(A)),
w, S, (u(A)) of utility levels. S(u(A)) is called the solution out-
come.

In addition to satisfy certain monotonicity and independence ax-
ioms, we will always require a solution to satisfy the following
axioms.

Pareto Optimality (PO): For all A € 3,
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3, S{u(A)) = max 3 ufa).
1EN acA 1eN

Trivial Independence (TI): For all A & %,
S((u(A Nacar SW(A))) = Su(A ).

PO requires that society picks a decision which maximizes the sum
of individual utilities. This maximal sum is called the social opti-
mum. TI requires that, if a society chooses a solution outcome and
later the society finds an additional public decision which gives the
same utility to all agents as the solution outcome, then the society
does not change its decision. As we will show in the remark at the
end of Section IV, since TI is implied by most of our monotonicity
and independence axioms, it is very weak.

Given x & /R, we define max x(A) = Maxx(a) and for any
coalition T € N, we define Sy = ig'T S, ur= .'EET u;, and so on. Thus

Pareto optimality is rewritten as: for al’l Acs 2, SyuA)=
max up{A). Vector inequalities are as follows: >, >, >.

III. The Axioms

Most of the axioms introduced here were already discussed in
bargaining theory by Thomson and Myerson(1980), but all of them
are reformulated to be suitable for quasi-linear social choice prob-
lems.

Strong Monotonicity (SM): For all A, BEZ, if A & B, then either
Sw(B)) = Su(A)) or Sw(B) > Su(A)).

This axiom was introduced in bargaining theory by Luce and
Raiffa(1957). Our formulation requires that an expansion in the set
of public decisions affects all agents in the same way: all strictly
gain or remain at the original solution outcome.

Individual Monotonicity (IM): For all A, B € 3, andfor all i & N, if
A = B and max u,(B) = max ufA), then either

(a) max un(B) > max up(A ) and Su(B)) > S(u(A)) for all j =i
or

(b) max un(B )= max ux(A) and S(u(B)) = S(u(A)).

This axiom was introduced in bargaining theory by Kalai and
Smorodinsky (1975), and variants appeared in Kalai (1977),
Rosenthal (1976), and Thomson and Myerson(1980). Our formulation
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can be regarded as a strengthening of these axioms, since we re-
quire the invariance of a solution outcome under the condition that
social optimum remains the same.

Independence of Irrelevant Alternatives(lIA): For all A, B € 3, if
B © A and max up(B) = max up(A), then Su(B)) = Su(A)).

Weak Independence of Irrelevant Alternatives (WIIA): For all A, B
e 3,if B S A, a, € Bimplies u(a) = S(u(A)) and there exists a*
€ B such that u(@* )= S(u(A)), then SW(B)) = Su(A)).

Monotonicity with respect to Cutting Alternatives (MCj: For all A, B
& 3, if BS€ A and a = B implies u(a ) £ S(u(A )), then either S(u(B))
= S((A ) or Sw(B)) < Su(A)).

IIA was introduced in bargaining theory by Nash(1950) and
WIIA by Thomson and Myerson(1980). Our formulation of /IA im-
plies that the existence of socially unoptimal public decisions does
not affect the solution outcome. WIIA is a considerable weakening
of IIA, since its application is very limited. MC is a strengthening
of WIIA, in that it is applicable to certain problems with different
social optima. However, it is not logically related to //A.

Independence of Undominating Alternatives(IUA): For all A, B =
3,if AS B and a & B\ A implies up(a ) < max up(A ), then S(u(B))
= S(u(A)).

Weak Independence of Undominating Alternatives (WIUA): For all
A Be 3,if AS B,a< A implies u(a) £ S(u(A )) and max up(B )
—=max up{A ), then Su(B)) = Su(A)).

Monotonicity with respect to Adding Alternatives (MA): For all A,
BeX,if AC B, a= A implies u(@a) = S(u(A)) and there does not
exist a* € B such that u(a*) > S(u(A)), then either Su(B))=
Su(A)) or Sw(B)) > Su(A)).

IUA was introduced in bargaining theory by Thomson(1981) and
WIUA by Thomson and Myerson(1980). Our formulation of /A im-
plies that the addition of socially unoptimal public decisions does
not affect the solution outcome. WIUA is a considerable weakening
of IUA, since its application is very limited. MA is a strengthening
of WIUA, in that it is applicable to certain problems with different
social optima. However, it is not logically related to JUA.

Twisting (Tw): For all A, B € X and for all i € N, if
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(i) @ & B\A implies ufa) < Sju(A)) for all j # i and
(if) a = A\B implies u,(a) < S(u(A)),

then either

(a) Siu(B)) > S,(u(A)) or
(b) S{u(B))< S{u(A)) for all j = i.

Cutting (Cu): For all A, BE X andforalli=N,if BS A anda s
A\B implies uja) < S{u(A)), then either

(a) Si(u(B)) > S{u(A)) or
(b) S{(B)) < Sju(A)) for all j = i.

Adding (Ad): For all A, BE S, andforalli =N,if AS Banda
B\A implies uja) < S(u(A)), then either

(a) Si(u(B)) < S{u(A)) or
(b) S{u(B)) > Sju(A)) for all j = i

These axioms were introduced in bargaining theory by Thomson
and Myerson(1980), and variants appeared in Peters(1986). They
require that a certain change in the set of public decisions which is
in favor of an agent results in either the gain of that agent or the
loss of all the other agents.

The next three axioms are weakenings of these axioms, in that
their applicability is limited to certain problems with the same so-
cial optimum.

Weak Twisting(W.Tw): For all A, B & X and for all i N, if

(i) max up(B) = max up(A),
(i) a € B\A implies uj(a) < S{u(A)) for all j # i and
(ili) a = A\B implies ufa) < S {u(A)),

then either

(@) S{u(B)) > S{u(A)) or
(b) S{u(B)) < S{u(A ) for all j = i.

Weak Cutting (W. Cu): For all A, BES and for all i €N, if BEA,
max uy(B) = max un(A) and a & A\ B implies u;(a) < Si{(u(A)),
then either

(2) Si(u(B)) > Siu(A)) or
(b) Sju(B)) < Sju(A)) for all j =+ i.

Weak Adding (W.Ad): For all A, BE3,, and for all i = N. if A<B.
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max un(B) = max up(A) and a € B\ A implies u;(a) < S; (u(A)), then
either

(a) Si{u(B)) < Si{u(A)) or
(b) S,w(B)) > S{u(A)) for all j # i

Dominance (D):For all A, B €3, either Su(B)) = S(u(A)) or S(B))
> S(u(A)) or Sw(B)) < Su(A)).

This last axiom was introduced in bargaining theory by Thomson
and Myerson (1980). It requires that for any pairs of problems A
and B, independently of their relation, all agents gain or lose
together. It can be interpreted as a requirement of strong solidarity
among agents.

In addition to those axioms demanding changes of a solution out-
come in intuitive directions, we also discuss a parallel set of axioms
demanding changes in counterintuitive directions. These axioms are
useful in explicating the relation between the previous ones.

Perverse Individual Monotonicity(IM*): For all A, B3 and for all
ie N, if A S B and max u{(B) = max u;(A), then either

(a) max up(B) > max un(A) and S{u(B)) > S;u(A)) or
(b) max un(B) = max up{A) and Su(B)) = Su(A)).

Perverse Twisting (Tw*): For all A, B € 3 and for all i = N, if

(i) a = A\B implies uja) < S (u(A)) for all j # i and
(ii) a = B\ A implies uia) < S{u(A)),

then either

(@) S{u(B)) > S{u(A)) or
(b) S{u(A)) < S{u(A)) for all j # i.

Perverse Cutting (Cu*): For all A, B3 and for allie N, if B <
Aand a € A\B implies u,(a) < S{u(A)), then either

(@) S(u(B)) < S (u(A)) or
(b) S{u(B)) > S,u(A)) for all j #i.

Perverse Adding (Ad*): For all A, B X and forallieN, if A <
Band a = B\A implies u(a) < S;(u(A)), then either

(a) S (u(B)) > Su(A)) or
(b) S()B)) < S(u(A)) for all j = i.

Perverse Weak Twisting (W.Tw*): For all A, B € X and foralli &
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N, if

(i) max up(B) = max un(A),
(i) a = A\B implies uja) < S{u(A)) for all j # i and
(iii) @ € B\ A implies uia) < S;(u(A)),

then either

(a) S{u(B)) > S{u(A)) or
(b) Sju(B)) < Sju(A)) for all j + i.

Perverse Weak Cutting (W.Cu*): Forall A, Be& 3, and for all i € N,
if B S A, max upn(B) = max un(A) and a € A\B implies ua) <
Si{(u(A)), then either

(a) S{u(B)) < S{u(A)) or
(b) S{u(B)) > Su(A) all j # i.

Perverse Weak Adding (W.Ad*): For all A, B& X and for all i € N,
if A S B, max upy(B) = max un(A) and a € B\A implies u;(a) <
S{u(A)), then either

(a) S{u(B)) > Siu(A)) or
(b) S{u(B)) < S{u(A)) for all j = i.

IV. The Logical Implications

Now we investigate the logical implications between these axioms.

Lemma 1
SM + PO — IIA.

Proof: Let A and B satisfy: BS A, max un(A ) = max un(B). By
SM. either Sw(A)) = S(B)) or Su(A)) > Sw(B)). If Sw(A)) >
S(w(B)), then Sp{u(A)) > Syu(B)). Now PO applied to both sides
implies that max up(a) > max up{B ), a contradiction.

Lemma 1
SM 4+ PO — IUA.

Proof: Let A and B satisfy: A € B, a € B\ A implies up{a) < max
upn(A ), which implies that max uy(B ) = max upy(A ). By SM, either
Sw(B)) = Sw(A)) or Sw(B)) > Sw(A)). If S(u(B)) > S(u(A)), then
SAhu(B )Y > Sp(u(A ). Now PO applied to both sides implies that
max upn(B) > max up(A), a contradiction.
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Lemma 2
SM + PO — IM

Lemma 2
SM + PO — IM*

Proof: Let A and B satisfy the hypotheses of IM (respectively IM*).
Then, by SM, either (i) S(B )) = Su(A )) or (ii) Sw(B)) > Su(A)).
If max up(B) > max upn(A ), then (i) is incompatible with PO, so
that (ii) holds. If may un(B ) = max upn{A ), then (ii) is incompatible
with PO, so that (i) holds.

Lemma 3

A — WIIA.
Lemma 3

1UA — WIUA.
Lemma 4

Tw — W.Tw.
Lemma 4

Tw* — W.Tw*.
Lemma 5

Cu— W.Cu.
Lemma 5

Cu' — W.Cu"
Lemma 6

Ad -+ W.Ad.
Lemma 6

Ad* —- W.Ad".

Proof- WIIA is obtained from IIA by a strengthening of the hypothe-
sis, whence the first implication. The other seven are obtained in a
similar fashion.

Lemma 7
11A — [UA.

Proof: Since the conclusions of both axioms are the same, it is
enough to show that the hypotheses of IUA implies those of IIA.
Now let A and B satisfy the hypotheses of IUA. Since A € B, we
have max up(A ) < max un(B ). Since a € B\ A implies un(a) < max
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up(A ), in fact we have max un(A ) = max upn(B).

Lemma 7
1UA — [IA.

Proof: 1t is enough to show that the hypotheses of IIA imply those
of IUA. Now let A and B satisfy the hypotheses of IIA. Since B
€ A and max un(A ) = max un(B ), there does not exist a = A\ B
such that upn(a) > max un(B).

Lemma 8
IM—[IA.

Proof. Let A and B satisfy: B & A and max upn(B) = max uy(A ).
We will reconstruct A from B by successive additions. First, let B;
be obtained from B by adding all public decisions of A\ B whose
first coordinate is smaller than max uy(B), i.e.,; a € Bij+~a = A and
uy(a) < max uy(B)). Since max ui(B;)= max u;(A ), IM applied to
B, and A yields

S(u(B1)) = S(u(A)).

This addition process is then iterated. At step k, we define By by
[a € By++a = A and ufa) < max y/(B) for some !/ =1,..., k]. By
applying IM to B, and B;_,, we have

S(u(By)) = SW(By_1))-
When &k = n, we eventually have:

S(u(B)) = S(u(B,)) = SW(B,—1)) = = = SW(B1)) = SW(A ),
as desired.

Lemma &
IM* — I[UA.

Proof: Let A and B be satisfy the hypotheses of IUA. Then we can
reconstruct B from A by successive additions, whose procedure is

described in the proof of Lemma 8, so that we have S(u(B)) =
S(u(A )).

Lemma 9
IM — Tw.

Proof: Suppose, to the contrary, that IM holds, but not 7w. Then
there exist A, B and i satisfying the hypotheses of Tw, but with
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(a) S{u(B)) < S{u(A)) and (b) 3 j =i | S{u(B)) > Siu(A)).
Let A, B, Ci, Cy and C’ be defined by

A=A U l|a*} where a* is a public decision such that u(a*) =
Su(A ),

B =B U |b*| where b* us a public decision such that w(b*) =
Su(B ),

Ci=AUB U ia.},

C;=AUB U [b" and

C=A"UB =C U C,.

By IM applied to A and A", and B and B’, we have
S(A7) = Sw(A)) and Sw(B")) = S(u(B)).

Two situations are possible:

(1) If max up{B ) > max up(A ), then applying IM to C; and C’, C’
and C,, and C, and B~ yields

SW(B)) = S(u(Cp)) = SM(C) = Su(Cy)).

Since u, < S,(u(A)) for all j #i and for all a & B\A from the
hypotheses of Tw, we have max u{C;) = max ufA” for all j # i
Therefore, by applying IM to A" and C;, we have

S, (u(Cy)) > SiuA),
so that we have
S{u(B ) > Su(A)),
which is incompatible with (a).

(i1) If max un(B) < max up(A ), the applying IM to A" and C,, C;
and C’, and C” and C, yields

Su(C2)) = Sw(C) = Su(Cy)) = S(A").

Since u; < S{u(A)) for all a = A\ B from the hypotheses of Tw, we
have max u(C2) = max u;{(B"). Therefore, by applying IM to B’ and
C,, we have

S, w(C2)) > S;(u(B7)) for all j # i.
so that we have

S{u(A)) > S,w(B)) for all j+ ¢
which is incompatible with (b).
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Lemma &
IM* — Tw*.

Proof: Suppose, to the contrary, that IM* holds, but not Tw*. Then
there exist A, B and i satisfying the hypotheses of Tw*, but with

(@) S{u(B)) < Siu(A)) and (b) I j#1i |Siu(B)) > SiuA)).
Let A°, B, C;, C; and C” be defined by

A=A U ja*| where a* is a public decision such that u(@*) =
Su(A ),

B"=B U |b*{ where b* is a public decision such that u(b*) =
Su(B )),

CC=AUB U la%,

C:=AUB U b} and

C=A"UB =C UGOGC.

By IM*® applied to A and A", and B and B’, we have
Sw(A7)) = Sw(A)) and S(B")) = (Sw(B)).
Two situations are possible:

(i) If max upn(B) > max upn(A), then applying IM* to C; and C’,
C” and C,, and C, and B’ yields

S(B)) = Su(Cy)) = Su(C)) = Su(Cy)).

Since u; < S{u(A)) for all a = B\A from the hypotheses of Tw*,
we have max u(C;) = max ufA"). Therefore, by applying IM to A’
and C;, we have

Siu(Cy) > Siu(A),
so that we have
S(u(B)) > S{u(A)),
which is incompatible with (a).

(i1) If max up(B) < max up(A), then applying IM to A”and C;, C,
and C’, and C’ and C, yields
Sw(Cy)) = S(u(C)) = SW(Cy)) = Su(A).

Since u; < Sj(u(A)) for all j # i and for all a = A\B from the
hypotheses of Tw, we have max u;j(C;) = max u(B") for all j # i.
Therefore, by applying IM to B’ and C,, we have
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S,(u(Cp)) > Su(B)) for all j # i,
so that we have

S{u(A)) > S{u(B)) for all j = i,
which is incompatible with (b).

Lemma 10
A — W.Tw*,

Proof: Let A and B satisfy the hypotheses of W.Tw. By applying
IIA to AU B and A, we have Su(A)) = Sw(A U B)). Again, by
applying 7IIJA to A U B and B, we have Su(B))= Su(A U B)).
Therefore, we have S(u(B)) = S(u(A)), as desired.

Lemma 10
1UA — W.Tw".

Proof: Let A and B satisfy the hypotheses of W.Tw*. By applying
IUA to A and A U B, we have Sw(A U B)) = Su(A)). Again, by
applying JUA to B and A U B, we have Su(A U B)) = Sw(B)).
Therefore, we have Su(B)) = S(u(A)), as desired.

Lemma 11
Tw — Cu.

Lemma 11’
W.Tw — W.Cu.

Lemma 12

Tw* — Ad”*.
Lemma 12

W.Tw* —- W.Ad".

Proof: Cu is obtained from 7w by a strengthening of the hypoth-
eses, whence the first implication. The other three are obtained in a
similar fashion.

Lemma 13
Cu — Ad.

Lemma 13
W.Cu — W.Ad.

Proof: Suppose, to the contrary, that Cu(respectively W.Cu) holds
but not Ad(W.Ad). Then there exist A, B and i satisfying the
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hypotheses of Ad(W.Ad) but with
(a1) S (u(B)) > Si{u(A)) and (b)) 3 j =i |SiuB) < SiuA).

Note that S,(u(B)) > S{u(A)) and S{u(A)) > ufa) for all a imply
S,u(B)) > uia) for all a= B\A. Therefore, by Cu(W.Cu), either

(ag) Su(A)) > S{(u(B)) or
(by) Siu(A)) < S{u(B)) for all j # i.
Two cases may occur:

(i) (a1) + (by) + (ap) — From (a;) and (az), we have a contradiction.
(ii) (a;) + (by) 4+ (by) — From (b;) and (bs), we have a contradiction.

Therefore, Cu(W.Cu) cannot hold without Ad(W.Ad) holding.

Lemma 14
Ad* — Cu”.

Lemma 14
W.Ad* - W.Cu".

Proof: Suppose, to the contrary, that Ad*(respectively W.Ad")
holds but not Cu®(W.Cu*). Then there exist A, B and i satisfying
the hypotheses of Cu*(W.Cu") but with

(a1) S{u(B)) > S(u(A)) and (b)) 3 j# i | S{u(B)) < Siu(A)).

Not that S{u(B)) > S,(u(A)) and S;(u(A)) > ufa) for alla = A B
imply S;(u(B)) > u,a) for all a = A\ B. Therefore, by Ad*(W.Ad"),
either

(az) Siu(A)) > S{u(B)) or
(bg) Si(u(A)) < S{u(B)) for all j +i.
Two cases may occur:

(1) (a7) + (b1) + (a3) = From (a;) and (as), we have a contradiction.
(11) (a;) + (by) + (by) — From (b;) and (bs), we have a contradiction.

Therefore, Ad*(W.Ad") cannot hold without Cu*(W.Cu") holding.

Lemma 15
Cu+ Cu* + PO — MC.

Lemma 15
W.Cu + W.Cu* 4+ PO —~ WIIA.
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Proof: L.et A and B satisfy the hypotheses of MC.

(1) If max un(B) = max up(A), then given A and its solution S(u(A4))
let By be obtained from A by eliminating all public decisions of
A\ B whose first coordinate is smaller than S1(u(A)), i.e.; a € B+ a
€ B or [a = A\B and uj(a) > S1(u(A ))]. Since B} € A and a = A\
B; implies u;(a) < $1(u(A )), Cu and Cu™ apply. Four cases may
oceur:

1) Cula) + Cu*{a) — S;(u(By)) > S1(u(A )) > S1(u(B,)), a contradic-
tion.

2) Cula) + Cu*(b) — S(u(By1)) > Sw(A)), which implies S(u(B,)) =
S@w(A)) since PO implies Sy(u(B;)) = Syu(A)).

3) Cu(b) + Cu*(a) — Su(A)) > S(u(B,)), a contradiction to max
un(By) = max up(A).

4) Cu(b) + Cu®(b) — S, (u(A)) > S{u(By)) > S{u(A)) for all j 1, a

contradiction.

This truncation procedure is then iterated. At step k, we define By
by: a € By++a = B or [a = A\B and ufa) > S{u(A)) for all / =
1,--,k ]. Applying Cu and Cu® yields S(u(By )) = S(u(By—1)). When k

= n, we eventually have:
Su(B)) = Su(B,)) = Su(B,—1)) = - = Su(B1)) = S )),
which is a conclusion of MC.

(ii) If max up(B) < max upn(A ), then let B be defined by B" =
B U {a*} where a* is a public decision such that up(a®) = max up(A ).
Since max un{(B") = max uy(A ), applying the same argument as in
(i), we have Su(B")) = S(u(A )). Since up(a*) = max un(A ) = Sy(u(A
), there exists at least one agent, say /, such that ufa*) < S u(A)),
so that Cu and Cu* apply to B and B". Four cases may occur:

1) Cu(a)+ Cu*(a)— S (u(B)) > S{u(B")) > S{u(B)), a contradic-
tion.

2) Cula) + Cu*(b) — S(B)) > S(u(B")), which violates PO since
max Un(B) < max up{B") = max up(A).

3) Cu(b) + Cu*(a) = Sw(B")) > S(u(B)) — Su(A)) > Su(B)).

4) Cu(b) + Cu*(b) — S,u(B")) > S,u(B)) > S,u(B")) for all j+ [,

and contradiction.

Therefore, we have either S(B)) = S(u(A )) or Su(B)) < Su(A)),
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as desired. Finally, we note that the proof for Lemma 15 is iden-
tical to (i).

Lemma 16
Ad + Ad* + PO — MA.

Lemma 16
W.Ad + W.Ad* + PPO — WIUA.

Proof: Let A and B satisfy the hypotheses of MA. We will recon-
struct B .from A by successive additions.

(1) If max un(B ) = max upn(A ), then let B, be defined by: a = B;
«+a = B and u1(A) < 5(u(A)). Since A S B; and a = B; \ A
implies uy(a) < S,(u(A)), Ad and Ad* apply. Four cases may occur:

1) Ad(a) + Ad*(a) — S1(u(A ) > S1(u(B,y)) > S1(u{A)), a contradic-
tion.

2) Ad(a) + Ad*(b ) — S(w(A)) > Su(B1)), which implies S(u(B,)) =
S(u(A )) since PO implies Sy(u(B;)) = Sy(u(A)).

3) Ad(b )+ Ad*(a)— S(u(By)) > SW(A)), a contradiction to max
un(B1) = max up(A).

4) Adb )+ Ad*(b)— Siu(By)) > Siu(A)) > S{u(By)) for all j = 1,

a contradiction.

This addition procedure is then iterated. At step k, we define B, by
[a € By++a = B and ufa) < S{u(A)) for some [ = 1, .- ,k]. Ap-
plying Ad and Ad® yields S(u(By)) = S(u(Bx—1)). When k = n, we
eventually have:

Sw(B)) = Su(B,)) = Su(By_1) = - = Su(B)) = Sw(A)),
which ‘is a conclusion of MA.

(ii) If max up(B) > max upn(A ), then let A" be defined by A" =
AU {a*} where a* is a public decision such that un(a*) = max u(B ).
Since max upn(A’)) = max up{B ), applying the same argument as in
(i), we have S(u(A")) = S(u(B)). From the hypothesis of MA, there
exists at least one agent, say /, such that u,a*) < S{u(A )), so that
Ad and Ad" apply to A and A". Four cases may occur:

1) Ada)+ Ad*(a)— S u(A)) > Su(A?) > S{u(A)), a contradic-
tion.

2) Ad(a)+ Ad*(b)— S(u(A)) > Su(A")), which violates PO since
max Upn(B ) = max up(A’) > max un(4).
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3) Ad(b )+ Ad*(a) — Sw(A") > Sw(A)) —= S(B)) > S(u(A)).
4) Ad(b )+ Ad* (b ) — S(u(A")) > S{u(A") for all j # [, a contradic-

tion.

Therefore, we have either S(u(B)) = Su(A )) or Sw(B)) > Su(A)),
as desired. Finally, we note that the proof for Lemma 16 is iden-
tical to (i).

Lemma 17
MC + PO — WIIA.

Proof: Let A and B satisfy the hypotheses of WIIA. By MC, we
have either (i) S(w(B)) = Sw(A)) or (ii) Sw(B)) < S(u(A)). Since
max un(B) = max un(A), (ii) is incompatible with PO, so that (i)
holds.

Lemma 17
MA 4+ PO — WIUA.

Proof: Let A and B satisfy the hypotheses of WIUA. Since max
un(B) = max up(A), there does not exist a = B such that u(a) >
S(u(A)). Therefore, by MA, we have either (i) Sw(B)) = S(u(A )) or
(ii) Su(B )) > SW(A)). Since max up{B) = max un(A ), (ii) is incom-
patible with PO, so that (i) holds.

Lemma 18
MC + WIUA 4+ TI 4+ PO — D.

Proof: Suppose, to the contrary, that MC, WIUA, TI and PO
hold, but not D. Then there exist A and B. such that Su(B)) +
S(u(A )) and neither S(u(B)) > S(u(A)) nor Su(B)) < S(u(A)). Let
A; and B, be defined by

A=A U |a*} where a* is a public decision such that u(@*) =

Su(A )} and

B, =B U {b*} where b” is a public decision such that u(p*) =
Su(B)).

By TI, we have
Su(A,)) = Su(A)) and S(w(B1)) = Sw(B)).
Next, we define 4, and B, by

Ay = lae Ay | ula) £ SwA)) and
By = la = By | u(a) < SwB)).
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By MC and PO, we have
S(u(Az) = Su(Ay)) and SWw(B3)) = Su(B1)).

Now we suppose, without loss of generality, that max upn(A) > max
un(B) and let

A3 =A; U lat

where a” is a public decision such that
u(@’) < Sw(A)) and up(a”) = max upn(B).

By WIUA applied to A; and A3z, we have
S(u(As3)) = S(u(Az)).

Now we define A4 by
Ay=las Az | ul@ <u@).

MC applied to A3 and A, yields either
S(u(A4)) = S(u(A3)) or Su(A4)) < S(u(A3)).

Since max un(A4) = max un(B3), invoking WIUA to A4 U B, and
Ay, and A, U By and B yields

Su(As U B2)) = S(Ay) and Su(A4 U By)) = S(u(B»)).
Therefore, we have either

S(u(B)) = Su(A)) or Su(B)) < S(u(A)),
which is in contradiction with the hypothesis.

Lemma 18
MA + WIIA + TI + PO — D.

Proof: Suppose, to the contrary, that MA, WIIA, TI and PO hold,
but not D. Then there exist A and B such that S(u(B)) # S(u(A))
and neither S@(B)) > Su(A4)) nor S(u(B)) < S(u{A)). Let A; and
B be defined by
Ay = A U la*} where a" is a public decision such that u(@”) =
S(u(A )) and
B, =B U {b"| where b* is a public decision such that u(h*) =
S(u(B )).

By TI, we have
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S(Ay)) = Su(A4)) and Su(B1)) = Su(B ).

Next, we define A, and By by
Ary=la € Ay | ua) = Su(A)) and
B, = {a e By | ul@) < SuB)).

By WIIA, we have
S(u(Az)) = S(u(A,)) and S(u(Bj)) = S(u(By)).

Now we suppose, without loss of generality, that max ua(A ) > max
up(B ). Since A; © A, U By and By & A, U B,, invoking MA to A,
U B; and A,, and Az U B; and B,, together with PO, yields

Su(A2 U By)) = S(u(Ay)) and

[S(u(Az U B2)) = S(u(By)) or S(u(Az U Bz)) > Sw(By))].
Therefore, we have either

S(u(B)) = Sw(A )) or Su(B)) < S(u(A)),
which is in contradiction with the hypothesis.

Lemma 19
D+ PO — SM.

Proof: L.et A and B be such that A © B. By D, either S(u(B)) =
Su(A)) or Sw(B)) > Su(A)) or Sw(B)) < Su(A)). If SwB) <
Su(A)), then Syu(B)) < Sn(u(A)). Now PO applied to both sides
implies that max up(B )< max up(A4), a contradiction to A & B.
Therefore, we have either S(u(B )) = S(u(A)) or Sw(B)) > S(u(A)).

All the logical implications are summarized in Figure 1.
Remark: The weakness of T/ can be shown in the following lemmas.

Lemma 20
W.Ad + PO — TI (Also, Ad + PO — TI).

Lemma 20
W.Ad* 4+ PO — TI (Also, Ad* + PO — TI).

Proof: We need to show only that W.Ad(respectively W.Ad") and
PO imply TI. Let B be defined by

B=AU la'|

where a* is a public decision such that u(a*) = S(u(A4 )).
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WIIA

WIUA

MA

FIGURE 1

Since u{a® )= Su(A)), we apply W.Ad n times to A and B. The
only way to satisfy all n conclusions of W.Ad(W.Ad*) is either

Su(B)) = Su(A)) or Sw(B)) > Su(A)).
Now by applying PO to both sides, we have
Su(B)) = S(u(A ),
as desired.

We conclude with a characterization of all the solutions satisfying
D and PO.

Theorem
A solution S satisfies D and PO if and only if there exists a
continuous function g R — /R" such that, for alli=1,--, n,

g; is strictly increasing and that, for all A € 3,

Su(A )) = g(a) where gn(a) = max up(A).
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Proofl.‘ Since the proof for the sufficiency part of the Theorem is
straightforward, we prove only the necessity part of the Theorem.
First, we note that given two sets of public decisions A, B 3, if
max up(A) = max up{(B), then D and PO together imply that S(u(A ))
= S(u(B)). Now let S defined on X satisfying D and PO be given. For
each a € |R, let A, 3 be a set of public decisions such that max
un(A.) = a and let g(a) = S(u(A)). Givena,B < IR, if @ > 8, then
D and PO imply that g(a) > g(B3). Therefore, g(-) must be strictly
increasing in all components.

We now show that g(-) is continuous. Suppose that, for some a = /R
and some [ €N, g,l(a) > sup g(B). Then consider A, = 3 such
that max up(A,) =5 lgn(@) +§‘§P gn(B)}. Since g() is strictly in-
creasing in all components, we have sup gn(B) < max up(A) < ga(a),
which implies gp{(8)< max un(A,) for all 8 < « and max up(4,) <
gn(B) for all B > a. So there does not exist ana & /R such that
gn( @) = max un(A,), a contradiction. A similar argument proves g,(®)

= inf g,(A).

g<a
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