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Abstract 

 

The Sanchez-Pomraning method to resolve the double heterogeneity (DH) in the method of 

characteristics (MOC) transport calculation, which we call DH MOC, is implemented into 

the DeCART code for the application of the DeCART code to the gas cooled reactors 

involving particulate triso fuels. Since the DH MOC requires essentially no modification of 

the existing MOC calculation module other than providing the effective macroscopic cross 

section and the effective source constructed from the stochastic material properties and 

micro regional source, implementation is focused on the variable structure changes to 

incorporate micromaterials and the pre and post processing for the DH MOC calculation. 

The DH MOC solver is incorporated first in the shielded resonance cross section 

determination and then as in the normal MOC transport solution. As a prerequisite for the 

implementation of the DH MOC solver, a method to determine the volume to volume 

collision probabilities (CP) for a sphere is derived in detail. The verification of the CP 

routines and other code modifications are performed using various analytical solutions. The 

final verification of the DH MOC is performed by comparing the DeCART DH MOC results 

with the MCNP results obtained with an explicit representation of the particulate fuels. The 

effect of double heterogeneity on the resonance cross section and on the normal MOC 

transport calculation are assessed separately. 
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1. Introduction 

 

This report is to describe the practical aspects of the implementation in DeCART code1 of  

the Sanchez-Pomraning method2,3 which is given with exhaustive details in the companion 

report4. This work was initiated by the need for the application of the DeCART whole 

transport code to the block-type Very High Temperature Reactors (VHTRs). These reactors 

employ prismatic hexagonal fuel blocks in which cylindrical fuel compacts containing 

coated fuel particles are loaded. The coated fuel particles having a diameter of ~0.5 mm, 

called TRISO particles (TRIstructual ISOtropic), are randomly distributed in the graphite 

matrix. The multiple coating provides a miniature containment vessel for the fuel seed to 

retain inside gaseous fission products even under the very high operating temperature 

conditions. These triso fuels bring in two levels of heterogeneity. The first level (macro-

level) is formed by the heterogeneous arrangement of the fuel and other components in the 

reactor, while the second level (micro-level) is formed by the TRISO particles in the 

compact.  

 

The most difficult problem appearing in the VHTR neutronic analysis is the resolution of the 

effect of double heterogeneity (DH) on the resonance self-shielding of cross sections and on 

the neutron transport. The DH effect on the resonance self-shielding can be mitigated by 

proper modifications of the DeCART resonance treatment module that is based on solving 

the resonance fixed source transport equation1 to determine the  subgroupwise fluxes with 

the method of characteristic (MOC) solver. Particularly, the DeCART code should be 

extended to solve the same fixed source transport equations in a doubly heterogeneous 

stochastic medium. The non-resonance part of DH effect is supposed to be much smaller, but 

not negligible. The method to treat the DH in the MOC calculation was initially derived by 

Sanchez2 and also explained with a sufficient detail in Reference4. We designate this method 

as DH MOC. Although, the DH MOC is known, there are a lot of things to be resolved for 

the actual implementation and this report describes the specific details of the implementation.  

 

In the following section, the general element and procedures needed for the implementation 

of DH MOC in DeCART are described. This section provides a complete set of symbols and 

formulae and the calculation algorithm. It also gives a detailed derivation of the collision 

probability for a heterogeneous sphere. Various analytic verifications of the collision 

probability routines are also provided. The details of the implementation of DH MOC in 

DeCART are described in Section 2, which requires a large amount of changes in the coding 
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including  the variable names changes in order to incorporate micromaterials and subregions 

and the logic changes to implement the logic changes. The description of the new input cards 

to describe the composite material is also given in Section 3. The verification of the 

implementation is done in various ways in Section 4. It is culminated at the assessment of the 

DH effect for a set of practical problems. The DeCART DH results are compared with the 

MCNP results and an assessment of the DH effect in the resonance cross section only is 

made as well.  
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2. General Elements and Procedure Required for DH MOC 

 

The need for an explicit double heterogeneity (DH) treatment can be judged by an optical 

size criterion. If  the following inequality is valid,  

matrix grain graind εΣ −Σ ⋅ >  (1) 

where  graind  is the grain diameter and ε  is the limiting optical length of about 0.1 which 

gives about 10% reduction in the flux, the volume-weighted homogenization of micro grains 

is unacceptable due to the large flux variation within micro grains. For a typical grain kernel 

size of about 0.04 cm, the above condition gives 2.5 cm-1 for the macroscopic cross section. 

With the typical value of the Uranium number density of 0.025 atoms/cm3 and the 

enrichment of 10% in the VHTR fuels, this macroscopic cross section corresponds to ~110 

barns for U-238 and ~1000 barns for U-235. Since near the resonances of U-238,  the 110 

barn condition can be met easily, all the resonance calculation should be done considering 

the enhanced self-shielding due to the double heterogeneity. On the contrary, it is expected 

that the other energy groups than the resonance groups, only a few thermal groups which 

would have a large microscopic cross section require the treatment of the DH. In this regard, 

the DH implementation will be concentrated on the resonance shielding calculation which 

involves the solution of the following subgroup fixed source problem in DeCART: 

( ) 1 1( , ) ( ) ( ) ( , ) ( ) (1 ) ( ) ( )
4 4am s p sψ ψ λ λ
π π

∇ + Σ + Σ = Σ + − Σ ΦΩ r Ω r r r Ω r r ri  (2) 

where  

    ( )ψ r,Ω  = angular flux, 

    ( )Φ r  = scalar flux, 

    ( )amΣ r  = absorption cross section for subgroup level m, 

    ( )sΣ r  = scattering cross section, 

    ( )pλΣ r  = potential scattering cross section multiplied by the intermediate resonance 

parameter.  

 

In the following, the complete set of formulae needed for the DH MOC solution of the above 

equation is given starting from the definition of all the symbols. Since the DH MOC method 

by Sanchez-Pomraning requires the escape probabilities which can be determined from the 

volume-to-volume collision probabilities, a method for determining the collision probability 
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for a sphere derived in Section 2.2. The verification of the collision probability routine by 

analytic solution is given in Section 2.3. The entire calculation sequence is described at last. 

Nomenclature of basic variables and basic formula 

 

2.1 Symbols and Formulae 

 

The following notations will be used in the formulae to follow. All the symbols and formulae 

can be found in Reference 4. 

 

0  = (carbon) matrix index, 

i  = type-of-grain index 1,...,i M= , 

k  = index of grain’s layer, 

g  = grain label,  

 m = index of subgroup level, 

0p  = volumetric fraction for matrix, 

ip  = volumetric fraction for grains (i>0), 

g
ikV  = volume of layer k of grain i, 

g
ikr  = external radius of layer k of grain i, 

g
ikp  = volumetric fraction of layer k within grain i, 

ikp  = volumetric fraction of layer ki with respect to the entire material, 

, am ikΣ  = absorption cross section for grain i and layer k for subgroup level m, 

ikΣ   = total cross section for grain i and layer k, 

, s ikΣ  = scattering cross section for grain i and layer k, 

,0amΣ  = absorption cross section for matrix, corresponding to subgroup level m, 

0Σ   = total cross section for matrix, 

,0sΣ  = scattering cross section for matrix,  

g
iS  = external surface of grain i, 

;
g

ik ilP  = collision probability from layer l to layer k within grain i, 

cr  = normalizing coefficient to enforce neutron balance in DH MOC, 

β  = transmission coefficient ( 1 Leβ −Σ= −  ) along MOC trajectory L, 
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cβ   = normalized transmission coefficient ( c crβ β= ⋅  ) along MOC trajectory L, 

,0pλΣ  = intermediate resonance parameter times potential scattering in matrix, 

, 
g
p ikλΣ  = intermediate resonance parameter times potential scattering for grain i and layer k, 

0q  = isotropic neutron source in matrix, 

ikq  = isotropic neutron source in layer k of grain i, 

g
ikE  = escape probability from layer k of grain i to the surface of grain, 

ˆ g
ikE  = reduced escape probability from layer k of grain i to the surface of grain, 

Σ  = homogenized cross section calculated for current MOC region, 

q  = effective source in heterogeneous media for MOC  formula, 

asΦ  = (asymptotic) uncollided scalar flux for matrix, induced by internal sources only, 

ikΦ       =scalar flux at ik-layer resulting from internal sources ilq , 

ikΦ  = scalar flux of layer k of grain i (averaged by MOC region),  

0Φ  = scalar flux in matrix (averaged by MOC region). 

 

The following formulae will be used in the calculation sequence. 

1
/

K
g g g
ik ik ik

k
p V V

=

= ∑  (3) 

g
ik i ikp p p= ⋅  (4) 

, , ik am ik s ikΣ = Σ +Σ  (5) 

0 , 0 , 0am sΣ = Σ +Σ  (6) 

(Remark: , 0am ikΣ =  and , 0 0amΣ =  for non-resonant material) 

( )
0

,         ( , ) tot l dlτ
′−′

′= = Σ ⋅
′ ∫

r rr - re r r r - e
r - r

  - optical path ,    2

( , )
( , )

4
eG
τ

π

− ′
′ =

′

r r
r r

r - r
(7) 

0
1 10

1 M K
g

ik ik ik
i k

p E
p = =

Σ = Σ + ⋅Σ ⋅∑∑�  (8) 

( )( 1) ( ) ( )
0

1 10
( )

1 ˆ ( )                                     

lim  - iterative formula for getting homogenized cross section 

M K
n n g n

ik ik ik
i k

n

n

p E
p

+

= =

→∞

⎧
Σ = Σ + ⋅ Σ −Σ ⋅ Σ⎪

⎨
⎪Σ = Σ Σ⎩

∑∑
 (9) 
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0
1 1

ˆ
M K

c ik ik
i k

r p p E
= =

= +∑∑  (10) 

1 Leβ −Σ= −  (11) 

c crβ β= ⋅  (12) 

;
1 ( , )g

ik il ikg
ik

g g
ik ilV V

P dV G dV
V

′ ′= Σ ⋅∫ ∫ r r                                                                         (13) 

1 ( , )g
ik g

ik
g g
i ikS V

E dS G dV
V

′ ′= ∫ ∫ r r  (14) 

2

( , )
ˆ ( , )

4
eG
τ

π

− +Σ′ ′
′ =

′

r r r -r
r r

r - r
  (15) 

1 ˆˆ ( ) ( , )g
ik g

ik
g g
i ikS V

E dS G dV
V

′ ′Σ = ∫ ∫ r r  (16) 

, , , ( )g g g
ik p ik s ik p ik ikq λ λ= Σ + Σ − Σ Φ  - internal source in grain i layer k (17) 

0 ,0 ,0 ,0 0( )p s pq λ λ= Σ + Σ − Σ Φ  - internal source in matrix (18) 

0
1 10

1 /
M K

as ik ik ik
i k

q p q E
p = =

⎛ ⎞
Φ = + ⋅ Σ⎜ ⎟

⎝ ⎠
∑∑ �   (19) 

            - scalar flux for matrix, induced by internal sources   

( ) ( ) ( )asq = Σ ⋅Φr r r      (20) 

 

The following equation is to be solved by the MOC solver of DeCART 

( ) ( ) ( ) ( )qψ ψ∇ +Σ =Ω r,Ω r r,Ω ri  (21) 

 

which finds the region-averaged scalar flux for the matrix and the region outgoing current by 

0 4

1 ( , )
4 V

r d dV
V π

ψ
π Δ

Φ = Ω Ω
Δ ∫ ∫    and   ( )out in c as inβϕ ϕ ϕ ϕ− = ⋅ −  (22) 

The grain flux is then determined by: 

;
1

1 K
g g

ik il il ik ilg
lik ik

V q P
V =

Φ =
Σ ∑ -scalar flux at ik-layer resulting from internal sources ilq (23) 

0
ˆ ˆ( )g g g

ik ik ik ik as ikE E EΦ = Φ + − Φ +Φ  (24) 

            - region averaged scalar flux in the layer k of grain i.  
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2.2 Calculation Sequence  

 

The calculation sequence to realize the DH MOC calculation is as follows: 

 

1) Obtain the material and geometry data from the additional user input for double-

heterogeneous regions. 

 

It is assumed that the heterogeneous media consists of the matrix (graphite) and M-types of 

randomly distributed grains. Grains are contains k-layers. The following geometry and 

material data should be specified by user. 

0p , ip , g
ikp , , a ikΣ , ikΣ , , s ikΣ , ,0aΣ , 0Σ , ,0sΣ  

 

2) Perform preprocessing to determine the following valuse prior to the MOC iterations 

(listed in order of preparation). 

ikp ,Σ� ,Σ , cr , ;
g

ik ilP , g
ilV , g

ikE , ˆ g
ikE , ikq , 0q , asΦ , q  

The above parameters can be calculated by formulae (3)-(20). Note that the homogenized 

cross section Σ  requires iteration by Eq. (9). 

 

3) Perform the MOC calculation  to determine 0Φ  at all regions 

 

4) Perform the post processing. ro determine ikΦ , ikΦ . 
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2.3 Evaluation of Collision Probabilities for Spherical Triso-Particles 

 

In the above calculation sequence, the volume-to-volume collision probabilities given by Eq. 

(13) is required for concentric spheres to determine the escape probabilities. This can be 

done by the Kavenoky technique [5,6]. Owing to the inherent symmetry of concentric 

spheres, the standard way of counting probabilities for isotropic emitters leading to the 

multiple integration can be remarkably simplified by reducing the problem to the counting 

probabilities for the mono directed source emitting the neutrons at hemi-space (see Figure 1). 

Indeed, considering single particles crossing heterogeneous sphere, we can conclude that 

optical path is only dependent on angleθ  between particle trajectory and radius, connecting 

a particle location and center of sphere. Then, the 8 uniformly distributed mono-directed 

particles depicted at Figure 1-C pass identical optical path trough the sphere as 8 

isotropically emitted particles at Figure 1-D. Figure 1 only intuitively explains the reason, 

why isotropically uniformly emitted particles have identical first flight collision probability 

compared to the mono-directed uniformly emitted particles. A rigorous consideration, 

however, requires a strong proof that particles from uniform mono-directed source have 

identical angular distribution by θ  (angle between trajectory and radius, connecting a 

particle location with center of sphere) compared to the particles from isotropic uniform 

source1, and hence identical optical path distribution by θ   and hence identical collision 

probabilities. That gives a reason for employing mono - directed source for counting 

collision probabilities in our specific case.  

 

Consider s uniform mono-directed source inside spherical shell { }1:  i i iV x R x R−= ≤ ≤
G G

 

emitting   

( )3 3
1

1 3
4i

i i i

q
V r rπ −

= =
−

 (25) 

particles per unit volume per unit time. Total emitting rate from volume iV  equal to 1. Then, 

collision probability j iP ← equals to collision rate in region { }1:  j j jV x R x R−= ≤ ≤
G G

. Let us 

count it. Owing to the well known reciprocity relation,  

j j i j i i j iV P V P← ←Σ = Σ  (26) 

                                                      
1 Angular distribution by θ  for the both cases can be easily obtained in the spirit of derivation 

formula (42). 
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Figure 1. Use of symmetry for evaluation first-flight collision probabilities. 

 

we can count collision probabilities for the case of i jR R≤  then, we can obtain remaining 

probabilities by using formula (26). For the forward considerations we need to count optical 

path for the neutrons, moving along trajectories located on the distance r  from spherical 

center as shown at Figure 2. The optical paths of interest ( )k rτ , ( )ij rτ − , ( )ij rτ +  can be 

expressed as:  

( )2 2 2 2
1 1

2 2
1

    for                

( )                             for       
0                                               for 

k k k k

k
k k k k

k

R r R r R r

r R r R r R
R r

τ
− −

−

⎧Σ ⋅ − − − ≥
⎪⎪= ⎨ Σ ⋅ − < <⎪
⎪ <⎩

 (27) 

1
( )    for 

( )

0                  for 

j

k
ij k i

r i j
r

i j

τ
τ − = +

⎧
<⎪

= ⎨
⎪ ≥⎩

∑  (28) 

1
( ) 2 ( ) ( )

i

ij k ij
k

r r rτ τ τ+ −

=
= +∑  (29) 

where kΣ is macro cross section and ( )k rτ  is elemental optical path corresponding to 

volume kV .  
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i-1,j-1
+τ

iτ jτ
 

,i j-1
-τ

r
iV

jV

iR
i-1R

P→i j

i,j
+τ

 

,i j
-τ

r
iV

jV

iR
i-1R jR

 

Figure 2. Notations for counting optical paths. 

 

Consider cylinder 1 depicted at Figure 3. It has thickness dr , internal radius r  and height 

2 2
1( ) ( )i i i iH r R r R r rτ−= − − − = Σ . Number of the first-flight neutrons, emitted by 

cylinder 1 and reached its right edge equals to: 

( ) ( )
0

12 1 2 1 ( ) 2i i
H h Hi

i i
i i i

qq re dhdr e rdr Exp rdr
V

π π τ π−Σ −Σ= − = − −
Σ Σ∫  (30) 

 

The only fraction 1, 1( )i jExp τ +− −−  of the first-flight neutrons overcomes optical path 

1, 1i jτ +− −  from the right edge of cylinder 1 to the left edge of cylinder 2. Among of neutrons, 

reaching the left edge of cylinder 2 the only ( )jExp τ−  part of them could be able to reach 

the right edge, while remaining part ( )1 ( )jExp τ− −  will have collision within cylinder 2. 

So, number of first-flight neutrons, emitted by cylinder 1 and collided within cylinder 2 is 

given by: 

( ) ( )1, 1
1 1 ( ) ( ) 1 ( ) 2i i j j
i i

Exp Exp Exp rdr
V

τ τ τ π+
− −− − − − −

Σ
 (31) 

Integration by r from 0 to iR  gives collision rate of first-flight neutrons emitted by the left 

hemisphere of iV  In the similar way can be obtained collision rate of the first flight neutrons,  
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Figure 3.Evaluation of volume-to-volume collision probability 

 

emitted by right hemisphere of iV . In the integration over right hemisphere we have the 

following terms: 

( )1 1 ( ) 2i
i i

Exp rdr
V

τ π− −
Σ

= number of neutrons, emitted by internal cylinder;  

1( )ijExp τ −−− = fraction of neutrons, overcoming the distance between iV and jV ; 

( )1 ( )jExp τ− − = fraction of neutrons, collided in jV . 

 Thus, volume-to-volume collision probability j iP ← equals 

( ) ( )

( ) ( )

1, 10

, 10

1      1 ( ) ( ) 1 ( ) 2

1   1 ( ) ( ) 1 ( ) 2

j i

i i j j
i i

i i j j
i i

R

R

i

i

P

Exp Exp Exp rdr
V

Exp Exp Exp rdr
V

τ τ τ π

τ τ τ π

←

+
− −

−
−

=

− − − − − +
Σ

+ − − − − −
Σ

∫

∫

 (32) 

Using relationships  

dr

iV jV

r

1
2



SNURPL-TR-006(07) 

 12

, 1, 1

, 1 1, 1

1, 1, 1

i j i i j j

i j i i j

i j i j j

τ τ τ τ

τ τ τ

τ τ τ

+ +
− −

+ +
− − −

+ +
− − −

= + +

= +

= +

 (33) 

, 1 , 1

1, 1 , 1

, , 1

i j i i j j

i j i i j

i j i j j

τ τ τ τ

τ τ τ

τ τ τ

− −
− −

− −
− − −

− −
−

= + +

= +

= +

 (34) 

 

and notation 

( ), , ,( ) 2 ( ) ( )i j i j i jS r r Exp Expπ τ τ+ −= − − −�  (35) 

we can recast (32) in the form 

( ), 1, 1 1, , 10

1
j i i j i j i j i j

i i

RiP S S S S dr
V← − − − −= + − −

Σ ∫ � � � �  (36) 

Integration (36) is performed numerically, by using Gauss integration technique. Prior doing 

integration, the whole range of integration [ ]0, iR  should be subdivided into subranges   

[ ] [ ]110, ,i
i k kkR R R−=
=∪  (37) 

of high degree of smoothness of integrated function, and only then Gauss integration 

technique can be successively implemented on the each subrange [ ]1,k kR R− . Note, 

evaluation of collision probability in spherical geometry requires Gauss integration 

technique unlike to the Gauss-Jacobi integration technique that usually is employed at 

cylindrical geometry. The last type of integration is relevant for singular Bikley functions, 

appearing in cylindrical geometry, while Gauss integration is convenient for smooth 

functions (35). Finally, collision probability j iP ←  for i j<  is obtained by formula  

( ), 1, 1 1, , 1
1 1

1
j i i j i j i j i j

ki i k

Rk
i

R
P S S S S dr

V← − − − −
= −

= + − −
Σ ∑∫ � � � �  (38) 

where integrals ( ), 1, 1 1, , 1
1

i j i j i j i j
k

Rk
R

S S S S dr− − − −
−

+ − −∫ � � � �  are obtained numerically with Gauss 

integrations technique. Integrated function is given by formulae (27)-(29), (35). 
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kR

1kR −

ij

jτ iτ

 
Figure 4. Implementation of Gauss integration technique. 

 

For the case of self collision iV  to iV  the similar counting gives: 

( ) ( )

( )

1, 10

0

1 1 ( ) ( ) 1 ( ) 2

2         + ( ) 1 2

i

i

i i i i i i
i i

i i
i i

R

R

P Exp Exp Exp rdr
V

Exp rdr
V

τ τ τ π

τ τ π

+
← − −= − − − − − +

Σ

+ − −
Σ

∫

∫
  (39) 

leading to the numerical integration  

( ) ( )2
1, 1

1 1

1 2 1 ( ) ( ) 2 ( ) 1i i i i i i i
ki i k

Rk
i

R
P r Exp Exp Exp dr

V
π τ τ τ τ+

← − −
= −

⎡ ⎤= − − − + + − −⎣ ⎦Σ ∑∫ (40) 

Using the reciprocity (26), we obtain collision probability j iP ←  for i j> . Then, using  

probability balance equation  

1
1

N

i j i
j

E P ←
=

+ =∑  (41) 

we obtain the first flight escape probability iE , required for MOC-DH calculations.  
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2.4 Verification of Collision Probability Routine Using Analytic Solutions 

 

The collision probability routine employing the algorithm described above can be made 

without much effort. But it turned out that a routine is already available. This is the SYBALS 

routine of the DRAGON code[6]. The verification of this routine was done using the analytic 

solution that can be obtained in case of a homogeneous particle. First of all, it should be 

noted that the transmission probability and the escape probability can be derived analytically 

for a homogeneous sphere as detailed in the following subsections. These probabilities can 

be used to verify the collision probability since the volume-to-volume probabilities can be 

converted into to the volume-to-surface escape probabilities and then to transmission 

probability using the reciprocity relation between the escape probability and the first flight 

blackness and the balance condition for the transmission probability and the first flight 

blackness. In the following, a partial verification of the collision probabilities obtained from 

the SYBALS routine is performed by comparing with the analytic results of the transmission 

and escape probabilities.  

 

2.4.1 Transmission Probability 

 

Assume that a grain has K layers. External radius of layer k of grain i is given by g
ikr . The 

total cross section of each layer is ikΣ , and 0 0g
ir = . Considering the central symmetry of the 

problem, we can reduce the problem to the calculation of the transmission probability for the 

flat mono-directed source. Indeed, for the mono-directed uniform source the probability of 

entering at grain with the angle ( ),  dθ θ θ θ∈ + equals to: 

2

cos 2 sin( ) 2cos sin 2R Rdp d d d
R

θ π θ θθ θ θ θ θ μ μ
π

= = =
i i

 (42)  

where 2 sinR Rdπ θ θi gives the area of the strip shown in Figure 5. Distribution (42) is 

exactly the same angular distribution as for an isotropic source. Hence, the isotropic source 

can be replaced by a uniform mono-directed source for the sake of the transmission 

probability calculations. 
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Figure 5. Evaluating of the angular probability density function for surface flux. 

 

The transmission probability g
iT is then obtained as in terms of the parameters defined in 

Figure 6: 
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Integrals (44) can be evaluated numerically by using standard Gauss integration. In case of 

the homogeneous grain case, the integration (44) can be performed analytically resulting: 
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For the case of 1/ RΣ = , the following results are obtained from the analytic expression and  

also from the SYBALS routine  

 Analytical solution : 0.29699708 

 SYBALS solution   : 0.29699705. 

This confirms that the SYBALS collision probability calculation is accurate. 

θ

R
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Figure 6. Configuration and parameters to calculate transmission probability 

 

2.4.2 Volume-to-Surface Escape Probability 

 

Assume that we have a sphere of radius R with uniformly distributed mono directed source 

of neutrons, emitting 33 / 4R  neutrons per unit time and unit volume. Then, number of 

neutron per unit time emitted by disk { }[ , ],  [ , ],  [0, 2 ]D r r r dr h h h dh φ π= ∈ + ∈ + ∈  
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gives the number of neutrons leaving from the sphere where h is the distance from the 

annular disk to the surface of sphere. Integration over range 2 2[0, 2 ]h R h∈ −  gives the 

total amount of neutrons leaving from the cylinder: 

{ }2 2[ , ],  [0, 2 ],  [0, 2 ]D r r r dr h R r φ π= ∈ + ∈ − ∈  

depicted in Figure 7. Finally, the integration over range [0, ]r R∈  gives the number of 

neutrons leaving the sphere per unit time. Considering that total number of emitted neutrons 

per unit time equals to one, we can write the final expression for the escape probability as: 
2 2 2 2 22

3 3 30 0

3 2 1 (1 2 )2 3
4 8

RR R r h R R eE dr dh re
R R

π
π

− Σ− −Σ Σ − + + Σ
= = ⋅

Σ∫ ∫  (49) 

 

 

 
Figure 7. Configuration and parameters to calculate escape probability 

 

For the case of homogeneous grain with 1/ RΣ = , the following results are obtained for the 

escape probability: 

 Analytical solution : 0.527252194 

 SYBALS solution   :0.527252183 

This is another indication that the SYBALS routine works fine. 
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3. Specifics of DH MOC Implementation into DeCART 

 

For the implementation of  the DH MOC, it is necessary to introduce another level of  region 

which is for the microscopic regions inside triso grains. This region is named subregion 

since they belong to the already defined flat source region (FSR). In the subregion, the 

source and  the material composition is regarded constant. The subregions are defined only 

for the composite material region which consists of the base matrix material and embedded 

grains. The material composition which specifies the each layer of the grain is also newly 

defined as the micromaterial in order to distinguish it from the noncomposite materials. If 

the fuel compact has N-kinds of grains each having 5 layers, there will be 5*N+1 

micromaterials to be defined. The number of subregions in this case is 5*N since the base 

region is reserved for the matrix. Since the flux and the source should be defined for each 

subregion, the region dependent variables should have another index to designate the 

subregion. The cross section variables need one more index to represent the micromaterial. 

The first step of modifying the DeCART routines was to change the structure of the relevant 

variables. The second  step was then to implement the pre and post processing for the DH 

MOC calculation starting from the geometrical and material input for the micromaterials. 

The code modification and implementation of another level of loops to take care of the 

micromaterials are described below. The new input data and description are also given. 

 

3.1 Change of Variable Structure  

 

As the first step of modification, all the scalar variables defined for region such as the 

regionwise scalar flux, source and  transport cross sections were replaced by vectors which 

have one addition  micromaterial. Specifically, an additional array index was added to 

represent the micromaterial in the xsreg(:,:) array. The micromaterial index was added in 

arrays siglp, sigps, phi, phiangsub and others. There were also newly added variables to 

define composites. The full list of extended variables is given in Table 1. The variable 

structure change required a huge DeCART modification, but fortunately it was a formal 

operation that could be performed in a semi-automatic way. No additional cycle by 

micromaterials and  no complicate logical changes were assumed at the first step. For  the 

debugging purpose, only the first entry of the vectorized variables was be treated explicitly. 

Numerical results obtained after the first step change were the same as the ones from the 

original DeCART.  
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Table 1. List of Variables Newly Added or Modified 

FORTRAN VARIABLE MEANING 
m material ID in the key DH related 

subroutines. Index m spans homogeneous 
and heterogeneous material as well. It is 
exact number coming form material card at 
DeCART input (see DeCART manual) 

mcmat  Index of micromaterial 
mcmat1 Address of base material, usually =1 
icomposite Index of current composite material 
itriso Index of current type of triso particle 
ilayers Index of current layer in triso 
ilayersd Index of current layer in subdivided triso 
matcomp(m)%n_constituting_mat Number of constituting micro-materials in 

current homogeneous or composite material 
matcomp(m)%mcmat_end Length of cycle by micro-materials 
matcomp(m)%mcmat_hom Address of homogenized material (=7) 
matcomp(m)%icomposite Variable to save number of current micro-

material 
matcomp(m)%nref_mat(mcmat) ID of homogeneous material, corresponding 

to micro material defined by mcmat 
matcomp(m)%vol_frac_composite_mat(mc
mat) 

Volume fraction of current micro-material 

composite%r(icomposite,itriso,ilayers) External radius of current triso-layed 
composite%rd(icomposite,itriso,ilayersd) External radius of current subdivided triso-

layed 
composite%pf(icomposite,itriso) Packing fraction 
composite%pikd(icomposite,itriso,ilayersd) volume fraction of sudivided layer 

respectively to composite material 
composite%imaterial(icomposite) ID of composite material (=m) 
composite%matrix_mat(icomposite) ID of base (matrix) material 
composite%ntriso(icomposite) Number of types of triso particles 
composite%nlayers(icomposite,itriso) number of layers in current triso 
composite%nlayersd(icomposite,itriso) number of layers after subdivision 
composite%ndiv(icomposite,itriso,ilayers) user-specified subdivision of current layer 
composite%mat(icomposite,itriso,ilayers)  
xsreg(ir,iz,mcmat1)%p0 volume fraction of matrix 
xsreg(ir,iz,mcmat1)%lami(itriso) Average chord of triso 
xsreg(ir,iz,mcmat1)%sigik(ilayersd,itriso) total XS of current layer 
sigt_cp(ilayersd) total XS in array for collision probability 

subroutine 
r_cp(ilayersd) radiuses for collision probability subroutine 
xsreg(ir,iz,mcmat1)%sigaik(ilayersd,itriso) absorption macro XS for MOC-DH 

preprocessor 
xsreg(ir,iz,mcmat1)%sigsik(ilayersd,itriso) scattering macro XS for MOC-DH 

preprocessor 
xsreg(ir,iz,mcmat1)%egik(1: n_cp,itriso) Escape probabilities by formula (14) 
xsreg(ir,iz,mcmat1)%sig_tilda sigma tilda, by formula (8) 
xsreg(ir,iz,mcmat1)%e_hat_gik(1:nlayersd,
itriso) 

E-hat, by formulae (16) 

dh_correction(ifs) Renormalization factor by form. (10) 
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3.2 Program Logic Changes 

  

The second step of changes consists of 1) updating the input processor to define properties of 

composite materials (number of micromaterials in current composite material, cross sections 

of micromaterials, geometry of triso particles and packing fraction); 2) updating everywhere 

in DeCART the branched logic of elemental region treatment, depending on internal micro-

structure (homogeneous or not), 3) updating cycle by micromaterials in every part of 

DeCART dealing with the treatment of composite region, 4) updating the pre and post 

processor of ray tracing (modification in the SUBGFSP.F subroutine), 5) extension of the 

flux convergence acceleration technique for the case of composite materials (unlike to 

conventional case, we need accelerate the flux convergence of several fluxes per each region, 

namely flux in matrix and flux in each layer of triso-particle) . 

 

Thus, from the point of view of programming, the following four basic modifications was 

done: 

 

1) updating of new micro heterogeneity driving index in all variables, related with transport 

equations (cross sections, neutron fluxes, regionwise reaction rates), 

2) updating logic of handling of two different kinds of regions (homogeneous and micro-

heterogeneous), 

3) updating cycle by the micro-heterogeneity driving index  

4) updating Sanchez-Pomraning pre and post processor for ray tracing subroutine to 

calculate neutron fluxes inside carbon matrix and at all layers of all kinds of triso particles.   

 

3.2.1 Two Loops to Treat Micromaterials 

 

There was two additional loops to incorporate the micromaterials. The first loop type is 

required for pre and post processing ray tracing procedure when we explicitly need to handle 

each triso particle, say for calculation collision probabilities. The second loop type is used  

when we simply need to process all micro materials regardless of its belonging to the triso 

particles or the base matrix material. Such type of cycle arises during scattering of fission 

source calculations.  

  

Consider a loop of the first type. The following code segment consisting of 3 nested cycles t 

shows in term of standard DeCART-DH variables how to perform nested cycle by triso 
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particles, triso layers and triso sublayers. Here the outermost loop, with header “do 

itriso=1,ntriso” is the cycle by kinds of triso particles. The loops with header “do 

ilayers=1,nlayers” spans all layers of current triso particle. Finally the loop with header “do 

idiv=1,ndiv” spans sublayers of the triso particle. 

 

 
 

Consider now the loop of second type. The code segment of the setrtfsp subroutine given 

below shows how to treat the micromaterials in a region. The loop is incorporated by the 

new micro material index mcmat. Loop by mcmat was incorporated inside the ordinary 

DeCART loop. The end of loop is defined by the mcmat_end parameter. A typical value of  

mcmat_end can be 1 for a homogeneous material and 6 for the simplest composite material 

consisting of only one type of grain having 5 layers. In case of a composite material, 

!     initiate micromaterial index  
!    (usualy mcmat=1 for matrix, 2 for fuel kernal etc ) 
      mcmat=1                                      
!     assign ID number of current material 
      m=celtyp(ictp)%ireg(ir1) 
!     assign logical variable, which is .true.  
!     for composite material and .false. for homogeneous 
      lcomposite=matcomp(m)%lcomposite          
!     exit from subroutine, if matrial is homogenous 
      if(.not.lcomposite) return         
!     assign ID number of composite material 
      icomposite=matcomp(m)%icomposite  
!     assign number of kinds of triso particles  
!     at current composite material   
      ntriso=composite%ntriso(icomposite)        
!     cycle by triso particles 
      do itriso=1,ntriso       
!       assign number of layers in current triso particle 
        nlayers=composite%nlayers(icomposite,itriso)      
!       initiate counter of layers in current triso-particle 
        ilayersd=0 
!       cycle by layers 
        do ilayers=1,nlayers  
!         assign theuser-specified subdivision of layer. 
          ndiv=composite%ndiv(icomposite,itriso,ilayers) 
!         cycle by subdivision 
          do idiv=1,ndiv       
!           Naming convention: d - points in  
!                                  sudivision-related  
!                                  variables         
!           update index of layer 
            ilayersd=ilayersd+1   
       ………………………………………………………………………………………………………………….. 
!           update micro-material index 
            mcmat=mcmat+1 
          enddo  ! end of sublayers (idiv) 
        enddo    ! end of layers (ilayers) 
!       remembering total number of subdivided layers 
   nlayersd=ilayersd                          
      enddo         ! end of triso (itriso) 
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mcmat=1 corresponds to the base matrix material, mcmat=2 corresponds to the triso kernel, 

mcmat=3 corresponds to the second triso layer end so on. In case of two or more triso 

particles,  the counting of mcmat starts from the matrix material, then it continues from the 

kernel of the first triso particle up to external layer, then it continues from the kernel of the 

second type triso particle and so on. So it is accumulated. Usually address mcmat_end+1 is 

reserved for smeared composite material.  

 

 
 

The essential benefit of using cycle of the second type comes from the possibility of unified 

treatment of heterogeneous and homogeneous regions. The only difference between the  

homogeneous and heterogeneous materials lies in the loop bound - mcmat_end. 

 

3.2.2 Non-Iterating Part of Ray Tracing Preprocessor 

 

This part of the preprocessor calculates all variables that can be determined only once before 

flux iterations. It was realized in subroutine repdh which calculates the following paramters: 

ikp ,Σ� ,Σ , cr , ;
g

ik ilP , g
ilV , g

ikE , ˆ g
ikE . These values are calculated for each region designated by 

standard DeCART indices ir, iz, then are stored in the xsreg structure with address mcmat1, 

corresponding to the base matrix material. For example, variable  xsreg(ir,iz,mcmat1)%sig 

  do l=myxyb,myxye 
    ic=lc2m(l) 
    ictp=icels3d(iz,cell2d(ic)%itype) 
    iregfst=cell2d(ic)%iregfst 
    ia=lctoa(l) 
    do ii=1,celtyp(ictp)%nxsreg 
      ir=cell2d(ic)%ixsregfst+ii-1 
!     determine inscattering element in p0 scat matrix 
      mcmat_end=xsreg(ir,iz,mcmat1)%mcmat_end 
      do mcmat=1,mcmat_end 
        call xsec1gp0(xsreg(ir,iz,mcmat)%niso, 
  +                 xsreg(ir,iz,mcmat)%temp, 
+                 xsreg(ir,iz,mcmat)%idiso, 
+                 xsreg(ir,iz,mcmat)%pnum,jgrp) 
!       Setup scattering source tsrc  
        do j=jssrcfr(jgrp),jssrcto(jgrp) ! Scat j->jgrp 
           do ifsl=1,celtyp(ictp)%nregxsreg(ii) 
             ifs=iregfst+celtyp(ictp)%mapxs2reg(ifsl,ii)-1 
!            here tsrc is source for fixed source problem 
             tsrc(ifs,mcmat)= tsrc(ifs,mcmat)+ 
  +              xsmacs(j,jgrp)*phisdh(ifs,iz,j)%mat(mcmat)  
           enddo ! of ifsl 
         enddo ! of j 
       enddo   ! of mcmat 
     enddo     ! of ii 
   enddo                                            
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contains the homogenized cross section, calculated for the MOC region designated by radial 

index ir and axial index iz. Variable xsreg(ir,iz,mcmat1)%e_hat_gik(1:nlayersd,itriso) 

contains reduced escape probabilities ˆ g
ikE for the region designated by ir,iz, for triso particle 

itriso. The preprocessor is bypassed, if material is homogeneous.  

  

3.2.3 Modification of Ray Tracing Driver Routines  

 

The MOC calculation is performed for two purposes in DeCART. The first one is to solve 

the subgroup fixed source problem and the other is to actually solve the transport problem. 

The MOC calculation for the subgroup calculation is driven by  subgrfsp and the other one is 

by moc. The following modifications were introduced to subgrfsp. 

 

1) updating loop by micro-material,  

2) setting up sources for subgroup fixed source problem 

3) invoking of non-iterated part of ray tracing preprocessor. 

4) updating iterating part of ray tracing preprocessor 

5) ray trace post-processing to obtain fluxes in subregions 

 

The iterating part of the preprocessor calculates values ikq , 0q , asΦ , q . These values are 

defined by formulae (17)-(20). The postprocessor calculates values 0Φ , ikΦ , ikΦ , defined by 

formulae (22)-(24).   

 

The modifications of the MOC subroutine is similar to those described above except for the 

calculation of sources ikq , 0q  in which the fission and scattering source must be incorporated. 
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3.3 Input Description and Sample Inputs 

 

DeCART-DH has the same input as the usual DeCART except for the DH related blocks and 

cards which is listed below. 

 

Table 2. Micro Material Input Description 

Card Format Variable Description 
Block: COMPOSITE_MATERIAL 

1 I %imaterial Composite material numeric ID 
1 I %matrix_mat Material of matrix 
1 I %i_homo Homogenization option 

   0 – DH, 1-Homogenization 
Block: TRISO_PARTICLE 

1 I %nlayers Number of layers 
1 R %pf Volume fraction for this particle 
2 R %r External radiuses of layers 
3 I %mat Constituent material of triso-layers 
4 I %ndiv Number of subdivisions of each layers 

 

Block COMPOSITE_MATERIAL includes only one card to assign two variables:  

composite%imaterial(icomposite), composite%matrix_mat(icomposite) where icomposite is 

a index of the composite material incrementing inside input subroutine.  Composite material 

numeric ID plays the same role as  Mixture numeric ID  in the conventional DeCART. Both 

of IDs can be used in GEOM block of DeCART to refer the material in the conventional way, 

regardless whether the material is homogeneous or not. 

 

Block TRISO_PARTICLE should follows block  COMPOSITE_MATERIAL. It can be 

repeated several times which means that a composite material includes several kinds of triso 

particles. The first card defines two variables composite%nlayers(icomposite,itriso) and 

composite%Pf(icomposite,itriso) - the number of layers and the volumetric fraction of 

current triso particle, respectively. Here, icomposite is a the counter of the composite 

material. The second card defines variable composite%r(icomposite,itriso,1:nlayers) where 

itriso is the counter of triso particles for the current composite material. The expression 

1:nlayers defines the length of input vector. The external radii of the triso-layers should be in 

one string in the increasing order.  The third card defines vector composite%mat 

(icomposite,itriso,1:nlayers). Material IDs should be listed in one string, in the order from 

the centre to periphery.  The fourth card defines composite%ndiv 

(icomposite,itriso,1:nlayers) variable which specifies the number of subdivision triso-layers 

in the DH MOC calculation. The recommended value is one, that means no subdivision. 
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A sample of input is given below. It is quoted from a k-eff benchmark calculation for a 

typical VHTGR fuel cell for the problem specification given in Section 4 . 

 
 

MATERIAL 
  mixture    1 UO2 2 10.41 27.0  / 92235 2.34176e-3 92238 2.10758e-2 8016  4.68352e-
2       
  mixture    2 C   1 1.05  27.0  / 6000  0.0526455 
  mixture    3 C   1 1.9   27.0  / 6000  0.0952632 
  mixture    4 SiC 1 3.18  27.0  / 6000  0.0477608  14000 0.0477608 
  mixture    5 CMA 1 1.2   27.0  / 6000  0.0601663 
  mixture    6 CBL 1 1.74  27.0  / 6000  0.0872411 
  mixture    7 Hom 2 1.65  27.0  / 92235 6.61369e-5 92238 5.95232e-4 8016  1.32274e-
3 6000  0.0613356 14000 2.83716e-3 
  mixture    8 GAP 1 0.01  27.0  / 6000  0.05e-7 
  mixture    9 Hom 2 1.65  27.0  / 92235 6.61369e-5 92238 5.95232e-4 8016  1.32274e-
3 6000  0.0613356 14000 2.83716e-3 
COMPOSITE_MATERIAL   9 5  0      ! assigned number of "mixture", material of matrix 
TRISO_PARTICLE     6 0.28916     ! number of layers, volume of this particle 
  0.0175 0.0275 0.0310 0.03455 0.0380 3.80001e-2 
  1      2      3      4      3    7 
  1      1      1      1      1    1 
COMPOSITE_MATERIAL  10 5 0         ! assigned number of "mixture", material of 
matrix 
  TRISO_PARTICLE     6 0.14458     ! number of layers, volume of this particle 
  0.0175 0.0275 0.0310 0.03455 0.0380  3.80001e-2 
  1      2      3      4      3         7 
  1      1      1      1      1         1 
  TRISO_PARTICLE     5 0.14458     ! number of layers, volume of this particle 
  0.0175 0.0275 0.0310 0.03455 0.0380 
  1      2      3      4      3 
  1      1      1      1      1. 
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4. Verifications of the Implementation  

 

In order to verify the implementation of the DH MOC solution into DeCART, several tests 

have been made during various stages of the implementation. The first type of the 

verification was to verify the collision probability and consequent escape probability 

calculated by SYBALS as explained in Section 2.3. The final test was for the actual doubly 

heterogeneous problem for which a Monte Carlo reference solution is available. The 

intermediate verifications include the verification of the subregion flux compared with the 

collision probability based solution, the comparison of the solution of the subgroup fixed 

source problem for the zero-leakage case with the analytic solution, the comparison of the 

resonance cross section between the heterogeneous and homogeneous particles, and some 

other testes listed in Table 3. In the following, some of the intermediate verifications and the 

final verification is described. 

 

Table 3. Verification of stochastic effective cross section 

N Test Purpose Result 
1 Explicit DH treatment for an 

artificial problem where the 
matrix and triso particles are 
composed of the identical 
material to obtain effective 
stochastic cross section which 
can be compared to the analytic 
solution.  

To verify all terms of 
nonlinear equation for 
effective stochastic cross 
section (9).  
To verify convergence of 
non-linear iterations (9) to 
a true value of effective 
stochastic, regardless of 
the choice of initial guess.

Obtained a full 
agreement between 
numerical and 
analytical solution 

2 Calculation of effective 
stochastic cross section for 
heterogeneous case to make sure 
that resulting cross section 
obeys theoretical bounds given 
in Reference 오류! 책갈피가 
정의되어 있지 않습니다.. 

To justify effective 
stochastic cross section in 
heterogeneous case. 

Effective cross 
section belongs to 
the analytically 
estimated range 
given at Physor2004 
Sanchez paper.  

 

 

4.1 DH MOC Subgroup Solution for a Single Cell 

 

In DeCART, the resonance scattering is not explicitly considered so that the resonance fixed 

source problems of Eq. (2) becomes simply:  
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For a homogeneous cell with the reflective condition leading to zero leakage which can be 

constructed by assigning identical materials to all the constituents of the fuel cell (matrix 

material=triso material), three terms of neutron transport equation can be cancelled as shown 

in equation (51).   
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 at our specific test problem. Then the analytical 

solution is: 
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It was verified that the solution of DeCART DH subgroup FSP gives the same solution as 

the analytic ones.  

 

The resonance cross sections obtained for the heterogeneous case and the homogeneous case 

are now compared in Table 4 which reveals a significant decrease in the heterogeneous case 

due to the enhanced self-shielding. 

 

4.2 Micro Heterogeneity Only 

 

Suppose a fuel cell containing only the fuel compact, i.e. carbon matrix with triso particles. 

With the reflective boundary condition, the infinite medium of the heterogeneous random 

mixture shown in can be modeled with the DeCART  DH MOC flux solver. A reference 

solution for this problem can be obtained independently by solving the neutron transport 

equation for single triso-particle, surrounded by carbon matrix with reflective boundary 

condition at the external boundary. The configuration is shown in Figure 8. The external 

radius is obtained as: 
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3

triso
triso carbon

f

RR
V+ =  (54) 
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Table 4. Effective random media cross section (Σtot ) in the resonance range. 

Group N Hetero 
*)  Homo**)   Difference in 

shielded XS (%) 
10 0.0009614 0.0009644 0.3100502 
11 0.0027077 0.0027642 2.0439910 
12 0.0064637 0.0067314 3.9768845 
13 0.0064708 0.0067037 3.4742008 
14 0.0114180 0.0119660 4.5796423 
15 0.0114060 0.0119210 4.3201074 
16 0.0088502 0.0089166 0.7446785 
17 0.0079102 0.0079553 0.5669177 
18 0.0024774 0.0024774 0.0000000 
19 0.1053000 0.1133000 7.0609003 
20 0.0183820 0.0184600 0.4225352 
21 0.0025503 0.0025499 -0.0156869 
22 0.0036905 0.0036987 0.2216995 
23 0.0009813 0.0009808 -0.0499597 
24 0.0025314 0.0025332 0.0710564 
25 0.0021887 0.0021891 0.0182723 

Σ (10-25) 0.1942896 0.2041117 4.8121212 
 

      *)  Double heterogeneous UO2 shielding, then volume weighted XS homogenization. 

    **)  Triso-particles and carbon matrix homogenized prior performing DeCART 

calculations. 

 

 

where fV is volumetric fractions of triso-particles in fuel compact to preserve the volumetric 

fraction of triso-particle in the matrix. The solution of this problem can be obtained semi-

analytically by employing the collision probability formula: 

1

n

i ij j
j

P q
=

Φ =∑ �  (55) 

where ( )j p j
q λ= Σ . The collision probability kernel ijP�  can be obtained from the collision 

probabilities ijP  by imposing the reflective boundary condition. The SYBALS routine gives 

both ijP  and ijP� . 
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Figure 8. Infinite medium of composite material to represented by a single triso model 

 

The result of this comparison is given in Table 5 in terms of the flux distribution within the 

triso. The data were obtained from the subgroup fixed source problem for resonance group 1, 

category 1, subgroup level number 4 (the biggest one for U238). It can be proved by this 

table that  the accuracy of DeCART-DH in the really heterogeneous test is quite good.  

 

Table 5. Flux distribution inside triso-particle obtained by DH MOC and  CP 

Layer MOC DH solution CP Solution  
1 0.13132 0.13145 
2 0.22443 0.22490 
3 0.24040 0.24121 
4 0.24375 0.24488 
5 0.24569 0.24735 
6 0.25118 0.24959 

 

 

4.3 Macro-heterogeneity Only at the Pin Cell Level 

 

The DH MOC solver can also solve the singly heterogeneous problem in which no triso 

particles are included. This prove the modification to realize the double heterogeneity has 

been done properly. In order to confirm this, a single  pin-cell was solved by the original 

DeCART and DeCART-DH. The DeCART DH solution was generated for the fuel compact, 

where the material properties of each layer of the triso particles were set to identical to the 

Carbon matrix 

Triso particle 

COLLISION PROBABILITY 

SOLUTION 

DeCART - DH 

SOLUTION 

Reflective boundary 

condition 

VERIFICATION 
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volume-weighted material property of the fuel compact. Therefore the DH algorithm was 

employed to processing the pin cell with homogenized fuel compact. As the result, a full 

identity was obtained between the DeCART DH and DeCART solutions. 

 

4.4 Assessment of DH effect in Practical Problems 

 

The final verification of the DH treatment capability of the  DeCART-DH was performed by 

assessing the DH effect for a fuel pin cell and for a pin-gas hole checkerboard problem. The 

MCNP solutions for the exactly same problems were taken as the reference. In the MCNP 

calculations, the  micro heterogeneity was explicitly represented. The DH effect is calculated 

as the difference in the reactivity of the heterogeneous and homogeneous cases. In order to 

the temperature dependency of the DH effect, 3 fuel temperatures were examined. The 

specification of the triso and compact and the triso packing fraction (29.7%) was obtained 

from the NGNP design. The hexagonal fuel cell was converted to a square cell. The 190 

group cross sections were used in the DeCART calculation while the continuous energy 

cross sections generated from ENDF-B/VI Rel.8 was used in the MCNP calculations. The 

problem specification for the heterogeneous case is shown in Table 6 while the smeared 

number densities are given in Table 7. The geometry of the single pin cell and the 

checkerboard problem is shown in Figure 9. 

 

The DeCART-DH calculation was performed twice. The first case is to consider the DH 

effect only in the subgroup FSP which gives the shielded resonance cross section with the 

DH effect. In this case, the normal MOC transport calculation was done without the DH 

MOC solver. The second case is for the full DH effect consideration which invokes the DH-

MOC calculation in the normal transport calculation. In the first case, the DH effect is 

partially covered since the DH effect due to the high cross section at the thermal range is not 

considered. As shown in Table 8, which summarizes all the results, the DH effect ranging 

from 2400 to 4300 pcm is well predicted by the DeCART DH  solver with the largest error 

of about 280 pcm as long as the full DH treatment is performed. It is worthwhile to note that 

the DH effect solely due to the resonance cross section is only 55~67% so the DH treatment 

in the normal MOC transport calculation is very important as well. 



SNURPL-TR-006(07) 

 32

 

 

 

Table 6. Specification of  fuel cell with explicit micro heterogeneity 

Composition Material Radius 
(cm) Nuclide 

Density
(g/cm3)

Atomic 
Number 
density 

U-235 2.1146E-2 
U-238 2.4754E-3 
O-16 3.5432E-2 Fuel Kernel UCO 0.0175 

C 

10.5 

1.1811E-2 
Buffer Carbon 0.0275 C 1.00 5.0192E-2 
Inner 

Pyro-Carbon Carbon 0.0310 C 1.90 9.3858E-2 

Si 4.8081E-2 Silicon 
Carbide SiC 0.0345 C 3.20 4.8081E-2 

Triso 
Particle 

Outer 
Pyro-Carbon Carbon 0.0385 C 1.87 9.3858E-2 

Compact matrix Carbon 0.6225 C 1.1995 6.0205E-2 
Coolant He 0.6350 He 0.0032 4.7744586E-4

Graphite block Carbon  C 1.74 8.7311663E-2
 

 

 

Table 7. Specification of  fuel cell with smeared micro heterogeneity 

Composition Material Radius 
(cm) Nuclide

Density 
(g/cm3) 

Atomic 
Number 
density 

U-235  6.9025876E-5
U-238  5.8965063E-4

C  6.1717100E-2
O-16  9.8801197E-4

Fuel 
UCO 

Carbon 
SiC 

0.6225 

Si  2.8200119E-3
Coolant He 0.6350 He 0.0032 4.7744586E-4

Graphite block Carbon  C 1.74 8.7311663E-2
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  1.749164893168  

 

Outer ring : 

0.6350 

Inner ring : 0.6225 

 

Number of triso 

particle : 685 

 

Packing fraction : 

29.6917% 

 

  

 

 

Figure 9. Configuration of the single pin cell and the checkerboard problema 
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Table 8. DH Effect at various conditions and calculation options 

Structure Temperature Program Material k-inf Δk MCNP-DeCART1)

DH 1.41680  MCNP 
Homogenized 1.35318  

3318  66.7%* 

DH 1.40114 DeCART  
Reso. Only Homogenized 1.36250 

2024  1294  

DH 1.42114  

300k 

DeCART 
Full Homogenized 1.36238  

3035  283 

DH 1.36309  MCNP 
Homogenized 1.29429  

3900  59.5% 

DH 1.34130 DeCART  
Reso. Only Homogenized 1.30354 

2160  1740  

DH 1.36811  

600k 

DeCART 
Full Homogenized 1.30337  

3631  269 

DH 1.32418  MCNP 
Homogenized 1.25269  

4310  54.5% 

DH 1.29721 DeCART  
Reso. Only Homogenized 1.26110  

2207  2102  

DH 1.32871  

1x1 

900k 

DeCART 
Full Homogenized 1.26088  

4049  261 

DH 1.56594  MCNP 
Homogenized 1.51008  

2362  68.2% 

DH 1.55126 DeCART  
Reso. Only Homogenized 1.51566 

1514  848  

DH 1.56820  

300k 

DeCART 
Full Homogenized 1.51545  

2220  143 

DH 1.52264  MCNP 
Homogenized 1.46179  

2734  60.5% 

DH 1.50274 DeCART  
Reso. Only Homogenized 1.46779 

1585  1149  

DH 1.52618  

600k 

DeCART 
Full Homogenized 1.46748  

2621  113 

DH 1.49015  MCNP 
Homogenized 1.42736  

2952  55.2% 

DH 1.46625 DeCART  
Reso. Only Homogenized 1.43281 

1592  1360  

DH 1.49413  

2x2 

900k 

DeCART 
Full Homogenized 1.43243  

2883  69 

 
1), * The values given in % is the fraction of the DH effect on the resonance cross section only 

to the whole DH effect. 
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5. Conclusions 

 

The Sanchez-Pomraning method the resolve the double heterogeneity effect in the MOC 

transport calculation was successfully implemented into the DeCART code. Although the 

implementation required a significant amount of changes in the coding in order to handle the 

micromaterials and subregions properly, the primary changes themselves were straight-

forward involving pre and post processing prior to the standard MOC calculation. The 

preprocssing is needed to determine the effective stochastic cross section of the composite 

and also to set the effective source. The preprocessing step requires the calculation of the 

escape probabilities for the triso particle which was made possible using a collision 

probability routine for a heterogeneous sphere. No significant modification of the MOC 

routine was required since the characteristics of the MOC problem for the doubly 

heterogeneous medium is identical except that the outgoing current of each region is to be 

augmented by the renormalization factor. The postprocessing after the MOC calculation 

which is to determine the flux and reaction rates in the subregions is also very quite straight-

forward. The DH implementation was done for both the subgroup fixed source problem and 

the normal transport problem. 

 

The verification of the DH MOC solver was done in several  ways including the comparison 

with analytical solutions obtainable in simplified cases. All the verification showed 

satisfactory results. Particularly, the final verification involving the pin cell and 

checkerboard calculations with and without the DH representation confirmed that the DH 

effect of about 3000 pcm can be predicted well with the DeCART DH solver with the 

maximum error of 280 pcm. It is quite noticeable that the DH treatment is needed not only 

for the resonance cross section generation but also for the normal transport calculation since 

the DH effect on the resonance cross section results in only about 60% of the total DH effect. 

 

Currently, the CMFD acceleration has not been implemented for the DH solver. It can be 

done without much effort by extrapolating the subregion flux as well. The implementation of 

the CMFD acceleration should be done in parallel with the extension of the DH solver to the 

hexagonal geometry. 
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