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The internal structure of a closed monocentric three-
dimensional city has been analyzed. It has been found that the
rent function is quasi-convex and building height function is
convex when the value of height is always negative. If the value
of height is dependent upon the height amenity and disamenity,
the direction of change in rent with respect to height will de-
pend on the relative height. The population density function
derived from the three-dimensional city model has been esti-
mated. It has been found that the explicability of the
three—dimensional city model is far greater than the standard
two-dimensional one.

I. Introduction

Almost all existing models of urban internal structures are
two-dimensional except the pioneering work by Wright(1971). Both
the monocentric and multicentric city models do not explicitly allow
for the existence of the vertical space(Alonso 1965; Mills 1972,
1984; Muth 1969; Fujita and Ogawa 1982; Papageorgiou and Caset-
ti 1971).

But, cities are basically three-dimensional. There are high-rise
apartments and office buildings and people are usually moving along
both horizontal and vertical directions.

It is true that building heights are far shorter than horizontal
distances of cities. But, for those living at the same distance from
the Central Business District (CBD), the vertical distance can play
significant roles in choosing the height of residence. Therefore, the
ignorance of vertical space can yield the distorted understanding of
the internal structures of cities. That is because the consideration
of the vertical space is not a mere inclusion of one more factor with
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sustaining the dimension of the model but the extension of it. There-
fore, new insights into the internal structures of real cities can be
obtained through the analyses of three-dimensional cities.

In addition to this theoretical necessity, the analysis of three-
dimensional cities is indispensable for obtaining empirically more
relevant models. For example, the urban population density function
derived from the two-dimensional model reveals that the population
density of a certain location is dependent upon the horizontal dis-
tance between the CBD and that location. It is generally observed
that the explicability of this population density function drastically
decreases as the size of a city increases or the internal structure of
a city becomes more complex.

This problem can be partially solved by the explicit consideration
of the vertical space. Explanatory variables of three-dimensional
population density function can be considered to be the horizontal
distance and the vertical one, i.e., the building height. It is intuitive-
ly clear that the explicability of three-dimensional population densi-
ty function may be much greater than the two-dimensional one.

Based upon these theoretical and empirical necessities, the closed
monocentric three-dimensional model of residential land use will be
analyzed. For this, the existence of vertical space will be considered
in two different ways. The one is the case where the value of the
vertical space is always negative due to the vertical moving cost.
This will be the simple extension of standard closed monocentric
two-dimensional model where the value of horizontal distance is
always negative. The other is the case where the value of the ver-
tical space is evaluated by considering both the height amenity and
disamenity.

II. The Internal Structure of a Simple Three-Dimensional City

The internal structure of a closed monocentric three-dimensional
city will be analyzed. This will be the simple extension of standard
two-dimensional model because the value of height, i.e., the distance
from the earth, is assumed to be always negative like the value of
the horizontal distance from the CBD in a standard two-dimensional
model.

Let z be the horizontal distance from the CBD and 4 be the
height. Any location can be expressed by the two-tuple, (z, k). An
agent living at any (z, k) consumes the composite commodity x(z, k)
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and the space s(z, h). p is the exogenously given price of composite
commodity and R(z, h) is the rent per unit space at (z, h). Also, y is
the exogenously given income of an agent and r is the exogenously
given opportunity cost of urban land use.

For each z, H(z) is the maximum of h. Thus, H(z) being deter-
mined endogenously will be called as the building height at z. C(H)
is defined as the per space construction cost necessary for con-
structing a building with height H.

The boundary of a city, b, is the boundary between the residential
area of a city and the agricultural open space where there are
assumed to be no buildings.

Assumption 1
At city boundary, the building height is zero, i.e., H(b) = 0

As for the construction industry, no scale economy is assumed
(Mills and Hamilton 1984). Also, since it is necessary to buy lands
for constructing bulidings, it is assumed that the per space
construction cost with hegith zero is r.

Assumption 2
C'(H) >0, C"(H)< 0 and C(0) = r.

The possibility of constructing a building with a certain height
will be dependent upon the willingness to pay per unit space and the
per unit space construction cost. The construction industry faces
with two types of decision making. The one is to determine whether
or not to establish a building and the other is to decide the height of
a building.

The construction industry is assumed to decide to establish a
building when the willingness to pay per unit space of agents living
on earth due to the non-existence of buildings is greater than the
per unit space construction cost. Also, it is assumed that the height
of a building is determined so that the willingness to pay per unit
space of agents living at the top of a building is the same as the per
unit space construction cost.

Assumption 3
for all z < b, R(z,0) > C(H(z)) and R(z, H(z)) = C(H(z))!

'As will be clear after the proof of Proposition 2, this assumption actually implies that
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t is the exogenously given marginal horizontal moving cost, i.e.,
the marginal moving cost necessary to move from the residential
location on earth to the CBD. T is the exogenously given marginal
vertical moving cost, i.e., the marginal moving cost necessary to
move from a certain height to the earth. Then, the after moving cost
income of an agent living at (z,h) will be y — tz—Th.?

Let u be the level of utility and V() be the indirect utility func-
tion. Then, the spatial equilibrium condition of a three-dimensional
city can be expressed as follows.

Condition 1
V(P,R(z,h), y —tz — Th) = u. ®

Under Assumptions 1 through 3 and Condition 1, a three-dimen-
sional city can be discribed by the following simultaneous equation
system.

VP, R(z, h), y — tz — Th) = u (1)
VRV, = s(zh) @)

Vo / V, = x(zh) 3)
R(b,0)=r @)

R(z,H(z)) = C(H(z2)) (d)

IK [ 2x 2/ stehdhdz = N (6)

where, N is the exogenously given population size. The endoge-
nous variables are, R(z,h), s(z,h), x(z,h), H(z), b, and u. Among these
endogenous variables, we are interested in variables which are new
compared with the standard two-dimensional model; R(z,h) and H(z).

In the standard two-dimensional city model, rent function is found
to be convex. But, in the three-dimensional city, it can be shown
that the rent function, R(z,h), is quasi-convex. Also, if z or & in-

the profit maximizing construction industry establishes a building with a certain height
only when the willingness to pay per umt space at any height is greater than the per unit
space construction cost.

2The general form of after moving cost income will be y — 1z + T(h), where T'(h) =0.
But 1n this section, the case of T'(h) < 0 will be considered. The general case will be
considered 1n the next section.

3This spatial equilibrium condition implies that an individual can obtain at most u
wherever he lives. Thus, this spatial equilibrium condition can be rewritten as V(P,
R(z,h), y — 1z — Th) < u.
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creases, the after moving cost income will decrease. Therefore,
R(z,h) will also decrease.
Proposition 1

Under Condition 1, i) R{z,h) is quasi-convex and ii) R(z,h) is
decreasing in z and h.

Proof :
i) Let A= {(z,h) R(z,h) < k. Then, for all (z, h) = 4,
V(P,R(z,h), y —tz— Th)=u > V(P, k,y — tz — Th)
Define y = V(P,k,y) = u. Then, for all(zh)= A, y >y —tz— Th.
For all z’,h"), (z”,h”) = A and for all A20< A <1,
define (z,h) = A (" h") + (1 — A)2"h").
Since y —tz" — Th’ < y and y — 2" — Th"” < 3,
Ay —tz/ = ThY+(Q1— ANy — 2" — Th")
=y—HaZ'+1— )" —T(Ah"+ Q10— )"
=y—tz—Th<y.

Thus, V(P, k,y —tz — Th) < u. Therefore, R(z,h) < k and (z,h)
= A.

ii) Suppose z’ > z. Then, for all A,y —tz’ — Th<y—tz—Th
Also, Conditi(_)n limplies that V(P, R(z',h), y — 1 — Th) =
u= V(P Rz, h), y—tz — Th). Therefore, R(z,h) < R(z, k).
The same logic can be applied in case of .

Q. E. D.
Remark 1: If R(z,h) is assumed to be continuously differentiable as
usual, it can be shown that 9R(z,h)/9z=R,= —t/s(z,h) < 0
and OR(z,h)/oh=R,=—T /s(z,h) < 0.

For clarifyng the characteristics of the building height function,
H(z), the following two lemmas will be necessary.

Lemma 1

Under Condition 1, 9s(zh)/ 9z=s,>0 and 9s(z,h)/ oh =
Sn > 0.

Proof: From Condition 1, S(P, R(z,h), y — tz — Th, u) = s(z,h).
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Then, s, = Sg R, — AV
= [Sg — s(z,h)S, 1R, — 1S,

where, Sp implies the substitution effect and Sz and S, have ob-
vious meanings.

Since, R, = —t / s(z, h), s, can be expressed as,
s, =Sg + s(z,h)S)(t / s(z,h)) — 1S,
=Sz R, >0.
By the same reasoning, it can be derived that
s, =Sg R, > 0.
Q. E D
Lemma 2

Under Condition 1, 9%R(z,h)/82z°=R,, > 0,
9°R(z,h)/9h* = Ry, > 0 and 9%R(z,h)/9z0h =R,, > 0.

Proof: Since R, = —t / s(z,h), it can be derived that
R, =s,(t /5% > 0.
By the same reasoning,
Run = st / 5°) > 0.
From R, = —t / s(z,h), it can be derived that

R,y =t/ s%s, > 0.
Q. E. D.

Remark 2: Since R,, = R,,,, it can be noticed that s, = Ts,.

As z increases, after horizontal moving cost income will increase.
This implies that the bid rent for height will decrease. Therefore,
this will cause the decrease in building height.

Proposition 2

Under Assumptions 2 and 3 and Condition 1, the building height
function is decreasing and convex with respect to the distance from

CBD, i.e., dH(z)/dz = H' < 0 and dH'/dz = H” > 0.

Proof:
1) R(z, H(z)) = C(H(z)) from Assumption 3.
Thus, R, + R',H = C'H'.
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Therefore, H = R, / (C’ — R,) > 0.
ii) From i), H” can be obtained as follows
H” =[1/(C—Ry)?][(R.:+ Ry H)C —R))
— R,(C"H’ — (Ry, + RunH"))]
=[1/(C"—R)*][(R.. + R:p H')(C'— Ry
+ R(Ry, + Ruy H)— R, C"H’]
From Lemma 2 and Remark 2,
R+ Ry H = (s. /st + TH)
Ry, + Ruy H = (s, / s3(t + TH’).
By substituting these, H” can be rewritten as,
H'=[1/(C"—R)1[(1/ s+ TH')C — Ry
(. + H'sy) — R, C"H'].
From Remark 1, t4+ TH =¢[Cs/(C’s+ T)] > 0.
Also, from Lemma 1, Remark 1 and (i),
s;+ H'sy=Sg R,+Sg Ry H
= Sr(R, + Ry H') = Sg R(C’ /(C' — Ry) > 0.

Therefore, H” > 0.
Q. E. D.

In summary, if the money value of height is alwalys negative, the
internal structure of a closed monocentric three-dimensional city
can be described as follows. The rent function is quasi-convex and
building height decreases as the distance from CBD increases.

III. The Extension of the Model

The money value of height will be generalized in this section. In
section II, the money value of height is assumed to be alwalys nega-
tive. But, in this section, it is assumed that the money value of
height is the sum of the money value of height amenity and that of
height disamenity.

An example of height amenity may be the view of sight. There-
fore, it will be assumed that the height amenity is dependent upon
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the height itself. The height disamenity is assumed to be dependent
upon the relative height, i / H(z).

Assumption 4

The money value of height, T(h, H(z)), is the sum of the money
value of hieght amenity being dependent upon the height, A(h), and
the money value of height disamenity being dependent of the relative
height, D(h / H(z)), i.e., T(h, H(z)) = A(h) —D(h / H(z)), for all
H(z) > 0.

Under Assumption 4, the spatial equilibrium condition can be re-
written as follows.

Condition 2
V(P,R(z,h), y — tz — T(h,H(Z))) = u, for all z.

It is assumed that the height amenity increases in decreasing rate
and the height disamenity increases in increasing rate as the height
increases. The height amenity and disamenity are obviously related
to the height which is greater than zero. Thus, it is assumed that
the height amenity and disamenity occur only when an agent is above
the earth, ie., 2 > 0.

Assumption 5

dA(h) /dh = A" > 0 and dA'(h) /dh = A" < 0 (D
dD(h) / dh =D’ > 0 and dD’(h) / dh = D" >0 (8)
A0)=D0)=20 (9)
A’(0) — D'(0) > 0, for all z. (10)

Notice that, if equation(10) is not satisfied, i.e., A"(0) — D’(0) < 0,
then equation(7) through equation (9) will imply that the money value
of height is alwalys negative. Therefore, the internal structure of a
city will be exactly the same as is analyzed in Section II.

There will be no buildings at the boundary of a city. Therefore,
there will be no height amenity and disamenity.

Assumption 6

The money value of height is 0 if H(z) = 0.

*Since h < H, h equals to 0 1f H(z) = 0. Also, since h / H(z) is not defined when both
h and H(z) are 0, this assumption for the boundary of a city is necessary.
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From Assumptions 4 and 5, it can be shown that T(0, H(z)) =0
and 8 ThH(z))/ 0H(z)= Ty > 0.

Define F(z) such that max T(h,H(z)) = T(F(z),H(z)).
Also, define G(z) such that G(z) > 0 and T(G(z), H(z)) = 0.
The relationship between F(z), G(z) and H(z) can be explained by
the following proposition.

Proposition 3

Under Assumptions 2 and 3, Assumptions 4 through 6 and Condi-
tion 2, 3 F(z), G(z) and H(z) such that F(z) < G(z) < H(z), for all
z < b.

Proof:
i) By definition of F(z), F(z) satisfies that

A'(F2)) — D'(F(z) / H(2))(1 / H(2)) = 0

Bu Assumption 5, 3 unique F(z) > 0.
Also, equcation (10) implies that F(z) < G(z).
ii) By definition of F(z), 8 T()/0h = T, >0 if h < F(z) and T,
< 0 if h > F(z). Since A(G(2)) — D(F(z) / H(2)) = 0, the following
relation can be obtained under Condition 2.
for all z, R(z,0) = R(z,G(z)) > C(H(z)) = R(z,H(2))
Since G(z) > F(z), Ru(z,G(z)) < 0.

Therefore G(z) < H(2).
Q. E. D.
Remark 3: At city boundary, H(b) = 0. Therefore, F(b) = G(b) =
H(b) = 0 by definitions of F(z), G(z) and H(z) and Assumptions 5
and 6.

In analyzing the internal structure of a three-dimensional city, it
is natural to consider a city with the finite building height. The
sufficient condition for the finite building height will be that the
marginal money value of per unit space height amenity is less than
the marginal per unit space construction cost.

Condition 3
C'(H)> A(H) / s.

If this condition is not satisfied, { d(A(H) — D(h / H) /dH] /s
= A'(H) /s > C'(H). In other words, agents’ per unit space money
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gain from increasing H, which determines the willingness to pay,
will be greater than the unit space marginal cost of construction.
Therefore, the building height will be infinite.

Propostion 4

Under Conditions 2 and 3, dF(z) /dz =F < 0, dG(z) / dz = G’
< 0 and dH(z) /dz =H' < 0, for all z < b.

Proof:

1) At (z, H(z)), the following conditions must be satisfied
V(P, R(z,H(2)), y — tz + T(H(z), H(z))) = u (11)
R(z, H(z)) = C(H(2)). (12)

From, the differentiation of (11) and (12) with respect to z, it can
be derived that

H =1V, / [VkC — V,A’]
=1V, / VR(C — (A" /5)),
Therefore, H < 0 by Condition 3.

i1) By definition of G(z), T(G(z), H(z)) = 0. Thus, T,G" + T,H’
= 0. Since H < 0 from i), T, < 0 from Proposition 3 and T > 0,
G <.
iii) By the definition of F(z), it must be satisfied that

A’(F(z)) — D'(F(z) / H2))1 / H(z)) = 0. (13)

From the differentiation of (13) with respect to z, F~ can be
derived as

F = —(D'HH’ + D”FH’) / (A”H® — D"H).

From Assumption 5 and i), F’ < 0.
0. E. D.

The sign of R, is dependent upon whether h is greater than F(z).
In other words, Ry(z,h) > 0 if h < F(z) and R,(z,h) < 0 if h > F(z).
But the sign of R, is ur;iauely determined, i.e., R,(z,h) = [V, —V,
Ty H'] /7 Vg <O.

These results also imply that rent functions for different horizon-
tal distances do not intercept each other, i.e., if z” # z”, there does
not exist A such that R(z’,h) = R(z",h).
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FIGURE 1
THE INTERNAL STRUCTURE OF A THREE-DIMENSIONAL CITY

The internal structure of a three-dimensional city analyzed in
this section can be geometrically explained by the Figure 1.

IV. The Empirical Relevance of the Model

The empirical relevance of three dimensional city model de-
veloped in Sections II and III will be investigated in this section.
For this, the population density function of the three-dimensional
city model will be estimated and compared with the one based upon
the standard two-dimensional city model.

The number of population at z is |, 27z /s(z,h) dh =
N(z,H(z)). Therefore, the population density at z, PD(z), will be
PD(z) = N(z,H(z)) / 27 z. That is, the population density at a cer-
tain location is dependent upon the horizontal distance from the
CBD and the building height. Notice that the population density is
only dependent upon the horizontal distance from the CBD in
two-dimensional model.

The most widely estimated population density function of
two-dimensional city model has the form of semi-log linear; log
PD(z) = a3 + a1z + €. Here, € is the random error. In accord-
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TABLE 1
THE COMPARISION OF THREE-DIMENSIONAL AND TWO-DIMENSIONAL POPULATION
DENSITY FUNCTION

Constant  DIST HGT SHGT BD R?

o) 10.9970  —0.1383 0.2225
(57.55)  (—7.04)

@) 105269  —0.0558 —1.2068  0.3505
(54.58)  (—2.44) (—5.82)

3) 91282  —0.1067  0.2911 0.4862
(36.13)  (—6.51)  (9.39)

(4) 8.7822  —0.0966  0.4902  —0.0247 0.5108
(32.05)  (—5.89)  (6.59)  (—2.93)

(5) 9.1348  —0.0663  0.2503 06551  0.5188
(37.25) (—3.35)  (7.73) (—3.40)

(6) 88061 —0.0583  0.4408 —0.0241 —0.6304  0.5408

(33.06) (—2.97) (5.97) (—2.86) (—3.34)

ance with this, semi-log linear PD(z) of three-dimensional city mod-
el will be considered; log PD(z) = Bo + B1 z + B2 HEz)+ €.
Analyses of Sections II and III imply that (3, is negative and B is
positive. Also, it is expected that @, is negative.

Regressions have been run as for the city of Seoul, which is the
prime city of Korea. Administrative areas and population sizes of
precincts, the smallest administrative unit, have been obtained from
the “1980 Municipal Yearbook of Seoul.” Because some precincts
include Han-River, areas of Han-River are extracted from the admi-
nistrative area for those precincts. Distances between CBD and
precincts have been measured by 0.5km unit from the map.

The data for building heights cannot be obtained directly. But, the
data for the apartments units for each precinct can be obtained from
the “1980 Census of Population and Housing.” Therefore, as a pro-
xy variable for the building height, log of apartment units per one
square kilometer has been used.

Also, most precincts containing the boundary of a city were on
developing in 1980. Areas of those precincts are about five to seven
times greater than the average area of other precints and the migra-

5The building height, H(z), 1s an endogenous variable in the theoretical model. There-
fore, in estimating the population density function of a three-dimensional city, the equa-
tion H(z) will be also necessary. But, because the data for H(z) 1s not available, the proxy
varlable for H(z) will be used. Thus, the equation for H(z) 1s enforced not to be consi-
dered.
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tion to those precincts has not been finished at that time. Therefore,
boundary dummy variable is used. Because of reasons just men-
tioned, the coefficient of boundary dummy variable is expected to
have the negative sign.

Results of regressions are summarized by Table 1. In Table 1,
DIST is the distance from the CBD, HGT is the building height,
SHGT is the squared value of HGT and BD is the boundary dummy
variable. Also, numbers in parentheses are t-values. Regression (1)
and (2) in Table 1 are based upon the two-dimensional city model
and (3) through (6) are based upon the three-dimensional one.

From regression results of Table 1, it may be concluded that the
three-dimensional city model has far greater explicability as for the
urban population density than the two-dimensional one.

V. Conclusion

Three-demensional city models have been analyzed with explicit
considerations of the third dimension, i.e., the building height. Major
findings of this paper can be summarized as follows.

The internal structure of a closed monocentric three-dimensional
city with the negative value of height can be explained as the simple
extension of standard two-dimensional one. The rent function is
quasi-convex and the building height funtion is convex such that the
building height decreases as the distance from the CBD increases
and the building height at the boundary of a city is zero.

If height amenities and disamenities are considered together, the
shape of rent function can be summarized as follows. For any given
height, the level of bid rent curves for different horizontal distances
do not intercept each other. Levels of bid rents with respect to
heights are dependent upon the relative heights. In other words, as
height increases the bid rent increases at first and then decreases.

Even though the shape of rent function is complex, the change in
building height is the same as before. The building height decreases
as the horizontal distance increases and the building height at the
boundary of a city is zero.

Regression results of Section IV may imply that the explicability
of three-dimensional one is greater than the standard two-dimen-
sional one. Therefore, it may be concluded that the three-dimensional
city model is theoretically and empirically more viable than the
two-dimensional one.



330 SEOUL JOURNAL OF ECONOMICS

References

Alonso, Willam. Location and Land Use. Cambridge, Mass: Harvard Univ.
Press, 1965.

City of Seoul. 1980 Municipal Yearbook of Seoul. Seoul, 1981.

Fujita, M., and Ogawa, H. “Multiple Equilibria and Structural Transition of
Non-Monocentric Urban Configurations.” Regional Sci. Urban Econ.
12(May 1982): 161-96.

Griffith, Daniel. A. “Modeling Urban Population Density in a Multi-Centered
City.” J. Urban Econ. 9May 1981): 298-310.

Kau, J. B, Lee, C. F., and Chen R. C. “Structural Shifts in Urban Population
Density Gradient: An Empirical Investigation.” J. Urban Econ. 3(May,
1983): 364-77.

Mills, Edwin. S. “Urban Density Functions.” Urban Stud. 7(1980): 5-20.

. . Studies in the Structure of Urban Economy. Baltimore: The
Johns Hopkins Univ. Press, 1971.

Mills, Edwin S., and Hamilton, Bruce. W. Urban Economics 3rd ed. Glenview:
Scott Foresman and Company, 1984.

Muth, Richard F. Cities and Housing. Chicago: Univ. of Chicago Press, 1969.

National Bureau of Statistics Economic Planning Board. 7980 Census of
Population and Housing. Seoul: EPB, 1982.

Papagoergiou, George J., and Casetti, E. “Spatial Equilibrium Residential Land
Values in a Multicentric Setting.” J. Regional Sci. 3(1971): 385-9.
Wright, C. “Residential Location in a Three-Dimensional City.” J. Pol. Econ.

89(Nov / Dec 1971): 1378-87.



