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A qualitative response model with heteroscedastic errors is
studied. First, the heteroscedastic maximum likelihood estima-
tor and its asymptotic properties are derived. Then, incon-
sistency of the standard (homoscedastic) maximum likelihood
estimator is proved. Lastly, two empirical examples and numer-
ical experiments follow to illustrate the feasibility of the heter-
oscedastic maximum likelihood estimator.

I. Introduction

When heteroscedasticity in the error terms for the latent (or
tolerance) index variable is suspected in a qualitative response mod-
el, there are three general approaches to consistent estimation and
inference. We may apply some transformation to correct violation to
the homoscedasticity assumption and then estimate the resultant
standard model. Egger (1979) and Goto et al. (1986) provide power
transformations relevant to this and related models.

Alternatively, we may apply a semiparametric estimation method,
which is robust te heteroscedasticity. The only known robust esti-
mator in the qualitative response model is Manski’'s maximum score
estimator’ (Manski 1975, 1985). Strong consistency is proved under
the independence assumption and the zero median assumption on the
error terms for the latent index variable. That is, the normalized
parameter vector 8*= (/| B | is estimated consistently for the
following model:

*This work was supported by National Science Foudation Grants DMS 82-19748 and
SES 82-08180 at Stanford University. I would like to thank Takeshi Amemiya, Theodore
W. Anderson, and Kimio Morimune for their very helpful advice and comments. Also,
suggestions from A.S. Goldberger, Lawrence J. Lau and an anonymous referee are
gratefully acknowledged. All remaining errors are mine.

'Cosslett's generalized maximum likelihood estimator requires the i.i.d. assumption, and
hence it is not robust to heteroscedasticity. See Cosslett (1983).
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Lity! >0
0 if yr <0,

yi =x;B + € and y;=

where €/s are independent and med(e¢;) = 0. From the consistent
estimate of 8* we can predict the discrete choice decision (where y;
= 0 or y, = 1) of the individual i, given his / her characteristics, x,.
However, we cannot obtain the success probability prediction, the
estimate of Pr(y; = 1| x;), since no particular parametric distribu-
tion is assumed from the start and, under the non-identical errors
due to heteroscedasticity, nonparametric estimation of the error
distributions is not possible. Besides that asymptotic distribution is
not normal (Kim and Pollard 1987), computation time becomes
burdensome when the dimension of 8*= A/ | 8 || is high or the
data set is large (see Manski and Thompson 1986).

The other alternative method is to construct explicitly a heteros-
cedastic qualitative response model, which provides the consistent
estimate of the success probability under heteroscedasticity. A
qualitative response model is a probability model where the prob-
ability aspects of discrete choices play a key role. Hence, the most
interesting questions? in a qualitative response model are i) the
probability of choosing an alternative, ii) the change in the probabil-
ity of choosing an alternative given a change in an explanatory vari-
able, iii) the expected response, and iv) the change in the expected
response given a change in an explanatory variable. The estimates of
these magnitudes can be obtained by the last approach, but not by a
semiparametric approach.

In this paper, an explicit heteroscedastic model is studied. First,
a heteroscedastic model is delineated. Asymptotic properties of the
heteroscedastic maximum likelihood estimator (MLE) are obtained.
Then, inconsistency of the homoscedastic (or standard) MLE under
heteroscedasticity is proved and discussed. Second, the two speci-
fications are compared using the two real data sets. In the discus-
sion of empirical results, large sample tests of the homoscedasticity
hypothesis are mentioned. Third, a Monte Carlo study on the empir-
ical size and power of a likelihood ratio test is performed, together
with a numerical experiment for the evaluation of the magnitudes of
inconsistency of the homoscedastic MLE under heteroscedasticity.
A final section concludes the discussion.

2The asymptotic standard errors in a multinomial logit model for the efficient esti-

mates of the four magnitudes listed below are the main topics in Fomby and Pearce
(1986).
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The literature on heteroscedasticity in a qualitative response
model is very limited. Local approximation to the inconsistency of
the homoscedastic MLE under the heteroscedasticity assumption is
studied by Yatchew and Griliches (1979, 1985) and by Kiefer and
Skoog (1984), using local asymptotic specification analysis. Howev-
er, both derivations are not operational in approximating even local-
ly the asymptotic bias in a realistic situation. This is due to the
requirement that the common variance of the homoscedastic model
prior to normalization be known. On the other hand, residual di-
agnostics based on the extended concepts of residuals for probit,
Tobit and related models are developed by Gourieroux et al. (1985,
1987a, 1987b), and Chesher and Irish (1987). Specifically, the fol-
lowing definitions of residuals in probit, Tobit and related models
are proposed: generalized residuals by Gourieroux et al. (1984,
1985, 1987a), simulated residuals by Gourieroux et al. (1987b), and
standardized residuals by Chesher and Irish (1987).

II. Heteroscedastic Probit and Logit Models

Consider the following four models with y, x;=(1 x;*'), z; being
the observables, and y¥ being the latent variable:

Model 0:y,=1(* > 0)
yt = xliﬁ + ai) i = 1,"'an;
where i1;~N(0,1) or a standard logistic distribution, independent
over .
Model 1:y; =1 (y¥> 0)
yT =x’iﬂ + u;, [ = 1,"',",
where u;~N(0, ¢;%) or a logistic distribution with mean zero and
variance o 2, independent over i,
o2 =g(z;a) with gy >0
z; should not include a constant term.

Model 1A :Model 1 with g(z;a)=(1 4+ z; )
Model 1M : Model 1 with g(z’;a ) = exp(2z’; a ).

The standard probit or logit regression model corresponds to
Model 0 above, while the additive heteroscedastic probit or logit
model corresponds to Model 1A, and the multiplicative heterosce-
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dastic probit or logit model corresponds to Model 1M. As for Model
1A and Model 1M, a normalization for parameter identification is
incorporated into the heteroscedasticity structure by not allowing a
constant term in z;. In the main text below, only Model 1A is analy-
zed in comparison with Model 0, while derivations for Model 1M are
briefly summarized in the Appendix B.

Alternatively, heteroscedasticity in the probit and logit models
can be interpreted as a varying coefficients model where y*;, = x’; 3;
+ &1;. However, this alternative modeling gives rise to a serious
problem that the number of parameters goes to infinity as the sam-
ple size goes to infinity.

From now on, we will use the following notation:

o0 = f’oo (27 ) 2exp(—v2/2)dy
$ ()= (27 ) %exp(—2/2)

AE:A) = [1+ exp(— 0]

F, = F{x;8) = Pr(y; = 1) = Pr(y*, > 0)
— aFI
EY TN

A. Heteroscedastic Probit Model

fi=fxig)

Now, consider Model 1A with the probit specification. The log-
likelihood function [ is written as:

I= 3 yilnF;+ 3 (1—y)In(l — F), (1)
where

F; = Pr(u;; > —x;f3)

= Pr(uy < xiB)

= [¥Bo  @m )12 exp(—r2/2)dt (2)
= [ fof 2r 6 22 exp(—2/2 ¢ At

= oW/ o).

Differentiating (1) with respect to 7 = ( ‘f ), we get the gradient
vector and the Hessian matrix of /:
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al " Yi 1 —y)
27 S a— Rl
ol _ — (3)
4 . x;Bf: : 1 —y)
el _ NP Y Yy
5 2 (sgn)( 7, HF,- - F’)iz,
where sgn; = sign(l 4 z’;a), and
84 3%
——— - A C
. FYE) EER
e 2 B RaRB B _
arovr , , 4)
24 EK c B
2aop oaoa

where

. Yi 1 —y)
A= —.§1fi[{ﬁ+?1 — F,-)zm

Q—y), xXip ,
(1 _ Iyl)% 02 ]xixi

i

+ -

" X (=207 + (/B)
B —Sywiplly g ¢ T2 AT

1z:2’;
Fo? Fo!

{

" , [ B
+,§](1 —yxi B [—W
_m—za?+wnﬂVH L
A—Fyat 7
" fil—a? + ;8% f2x:8 ,
C = Z(sgnyil Fo? + Flo, 1%z

1

: filmo? + i8N
— 2 (sgn)(1 — y) [W

f2x B )
A= Fpa "

t

and

fi=@raly exp|—(2of) (i B)
=1/0)$WiB/ 0.
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Using the above notation, the homoscedastic probit model gives
rise to the gradient vector —a'L and the Hessian matrix A after
setting 6, = o = 1. It is known that in the homoscedastic probit
model, (—A) is positive definite and hence the loglikelihood function
is globally concave. In contrast to this, we have the following nega-
tive result in the heteroscedastic probit model.

Theorem 1
The loglikelihood function (1) of the heteroscedastic probit model is
not globally concave.

Proof : It is easy to see that (—A) is still positive definite in the
heteroscedastic case, but the following simple counter-example to
the positive definiteness shows that (— is not necessarily

o<l )
o L. aY oy’
positive definite.

We consider the following simple heteroscedastic probit model:

y5i=B1+4 B+ Baxsi+u; ()

where x; and x5 are scalars, u;~N(0, ¢ %) independent over i and
6? =01+ a x5,)%. The data for ¥i, Xz °nd x3; consist of

y=00101010)
Xy = (2.875 4.5 5.625 5.625 6.25 6.25 6.75 6.75)

and

x3=(1010101 0).

2
Then one of the diagonal elements of — ya !

2]
at 8, = —0.005 B,= —0.003, 33=0.00
the negative value —1.1086.

37" " 5at evaluated
4 and a = 0.008, has

Q.E.D.

Since the loglikelihood function of the heteroscedastic probit
model is, in general, not globally concave, one has to try out several
different sets of starting values in search of the global maximum.

The heteroscedastic MLE is defined as

7 = argmax [.
reT=BxA
Then, we need the following assumptions to prove consistency and
asymptotic normality of 7.

Assumption 1
The parameter space T" is open bounded subset of the Euclidean
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K-space.

Assumption 2

{x;} are uniformly bounded in i and lim n° Zx,x, is a finite nons-
ingular matrix. Furthermore, the emplrlcal distribution function of
| x;1 converges to a distribution function.

Assumption 3

{z;} are uniformly bounded in i and lim n Ezz, is a finite nons-
ingular matrix. Furthermore, (1 4+ z; a) is bounded away from zero
for every i.

Remark

The first two assumptions are the same as the Assumptions
9.2.1-9.2.3 in Amemiya (1985) and Assumption 3 is a simple adapta-
tion of the assumptions in Amemiya (1977). Assumption 3 should be
replaced by the following Assumption 3M when we consider the
multiplicative heteroscedastic model [Model 1M] in the Appendix B.
Also note that {z;} are not necessarily subsets of |x;}.

Assumption 3M
| z;} are uniformly bounded in i and lim n’ 222, is a finite nons-
ingular matrix.

Theorem 2

Under the Assumptions 1-3, the heteroscedastic probit MLE 7 of
Y is consistent and asymptotically ,normal with the asymptotic
variance-covariance matrix [—€& -1° -1 | (8-ya’» Where

2Yovr’
i
CSver =
" f2 2( fixiB
— XX ) e— A
EEA—R A R
' , (6)
" ﬁz(xiﬂ)Z B
o o iz
= o PF(1 — F)

Proof : Consistency is immediately shown from Theorems 4.1.2,
4.2.2 and 4.2.3 in Amemiya (1985). Asymptotic normality is based on
Theorem 4.2.4 in Amemiya (1985).

Q.E.D.
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B. Heteroscedastic Logit Model

Basically the same results as those stated for the probit speci-
fication hold under the logit specification, but they are re-stated
briefly since the variance term containing a set of parameters «
appears differently in the distribution functions.

We consider Model 1A with u;~an independent logistic distribu-
tion. To accommodate the heteroscedastic variance structure [note
that 0, 2= (14 z;a)? is assumed], we write

F; = Pr(y;=1) = Pr(y; > —x’; 8)

= Pr(u,- < x',»ﬁ) ES A(x',ﬂ:d,-).
oF, F(l1—F)

Since f; = E T T the gradient vector and the Hessian
matrix of / are derived as:
al o« i — F)
a ﬁ 1=1 O',‘ Xi
ol _ = @)
o7 al V3 o (sgn)y; — F)x'; g
: - -y 2
oa =1 o iz
and
K| _{A C }
5707 _lC B/ )
where
x? . F(l—F)
A = —{(— R —— Vs
( 3 )lgl aiz xt'xl
n? « F(l1—F)x:p)
B=— 7
33 Py ZiZi
2n = O, — F)W:B)
+ (\/3 ) ,gl O_? zizi
2, F,' 1— E xl,'
c=(™)% ( X ﬂ)x,-z'i
3 =1 g?

i o (sgn)(yi — F)
AR e

X;Z';.
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As in the probit case, (—A) is p.d., but ——a—ya% is not neces-
sarily p.d. And the value of the counter-example in the previous
subsection is —1.2305, with the same set of data and at the same
parameter values.
Finally, under the Assumptions 1-3, the heteroscedastic logit
MLE is consistent and asymptotically normal with the asymptotic
variance-covariance matrix (—& o1 )? (B where

EYEXE
821 _ P 2
&5y =35
 F(1—F) " F(l — F)x; 8)
5 xx; —2 (sgn;) 3 X2
=1 Gi =1 ()'l.
X
. F(1 — F)x;R)
2T T A

i

[IL. Inconsistency of the Homoscedastic MLE under Heteroscedas-
ticity

Consistency of the homoscedastic MLE under regularity condi-
tions, including the homoscedasticity assumption, is proved by Ame-
miya (1985) and by Gourieroux and Monfort (1981). Gourieroux and
Monfort prove consistency of the homoscedastic logit MLE under a
less restrictive setting. In this section, we study the asymptotic
property of the homoscedastic MLE when the true model is heteros-
cedastic. Note that, before the usual normalization, the true argu-
ment of F, is x;3/ ¢, but the homoscedastic MLE uses x;8/¢
incorrectly.

Under a very restrictive structure—the same number of observa-
tions for each distinct o, and the same replications of covariates
for each distinct o, Yatchew and Griliches (1979) derive from
their local approximation formula for inconsistency the following
locally approximated condition among ¢ and o/s, which results in
no asymptotic bias of the homoscedastic MLE:

1

ko1 1 ) . )
-EEI - = T(where K is the number of distinct o,’s).

j

However, generally, with the probit specification, in a nonlocal or
global case the following condition is necessary even under the same
restrictive structure:
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K xlﬁ x; B
(0'

2 d( ), for every [ =1, N,

g
where N is the number of covariate vectors for each distinct o, [N
is the same across j=1,,K.]
Let us consider the following homoscedastic probit model:

yi=x:8 + &, &~IIN(0, c?). ®

Then, the homoscedastic probit MLE 4 of b= % maximizes the
loglikelihood function:

= 5 yIn®h) + 3 1 — yln(l — b).

Theorem 3

lAJnder Model 1 with normal errors, the homoscedastic probit MLE
b is in generdl inconsistent.

Proof : Under Model 1 w1th normal errors, b is a consistent estima-
tor of b*= B = |b f =0}, where

0*(b) = lim —,1,-[2 OiBo/ o Nnd(xb)
+ 31— 0iBo/ o) In{l — dib)]

and

2Q*b) .. 1 . ;
“ob  —lm- 3 $ &bk 0B/ 00)

—o@b) [l — o)1

However, in general, _?_g_’;(ﬂ does not vanish unless 6, = o, for
every I. (It corresponds to a o= 0 under Model 1A or 1M after
normalization.) Hence, the homoscedastic probit MLE b for b is
generally inconsistent when the true specification is heteroscedas-
tic. When S =0, Model 0 and Model 1A or Model 1M are indis-
tinguishable, and we can easily see that the homoscedastic MLE b is
consistent for b* =

Q.E.D.
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IV. Empirical Examples

In this section, we report the estimation results of both homosce-
dastic and heteroscedastic specifications using two real data sets.
However, in this and following sections, we impose the restriction
that z; = x;*.

The first data is a grouped data extracted from the Survey of
Consumer Finances (1969) by Amemiya and Nold (1975). The data
and variable definitions are reproduced in Table Al in the Appendix
A. Table A2 reports the maximum likelihood estimation results.
Since there are many observations per cell, we may apply a similar
procedure to minimum- X ? in the estimation of the heteroscedastic
model. However, the extension of minimum-X 2 procedure to the
heteroscedastic model results in no computational simplicity since
we end up with a nonlinear weighted least squares procedure which
requires iterations. Hence, we simply report the maximum likelihood
estimation results. Also note that in the logit expression — is
explicitly factored out so that comparison of parameters from probit
and logit models is immediate without rescaling. Using the notation
defined in Table Al, the latent variable is described as

y*i = b1 4 boxy + bsxs + 4;

ii;~—independent normal or logistic
with mean 0 and variance 1

under the homoscedastic specification, and

y5= P14+ Boxa+ Baxsi+u

u;~independent normal or logistic
with mean 0 and variance o?

0';2' =1+ @y + a3x3,~)2

under the heteroscedastic specification.

The second data is an individual ungrouped data from the Census
of Population and Housing, 1980 : Public-Use Microdata Samples
(“A” Sample, nationwide file 1/1000). For the modification and re-
duction of the data, see Table A3. For the definition of the vari-
ables and their summary statistics, see Table A4. We estimate a
conventional model for female labor force decision [e.g., Bowen and
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Finegan (1969), and Smith (1980)] by the maximum likelihood
estimation and the results are tabulated in Table A5. Note that the
format of the table is the same as that of Table A2. Among many
possible heteroscedastic specifications, the reported ones are the
best in terms of Akaike information criterion (AIC).

For the test of the homoscedasticity assumption on the error
term versus the heteroscedasticity assumption, first of all, we can
apply the trilogy of the asymptotic tests — likelihood ratio test,
Lagrange multiplier test, and Wald test. Davidson and MacKinnon
(1984) propose several Lagrange multiplier tests for various forms
of model inadequacy — omitted variables or heteroscedasticity of
known forms —in the logit and probit models. Their experiment
suggests that except for the test on the coefficients appearing in the
heteroscedastic variance structure, one of their proposed LM test
statistics, LM,, seems to have a small-sample distribution which is
remarkably close to its asymptotic one. For the test on the coeffi-
cients in the heteroscedastic structure, which is of interest to us,
LM, tends to reject the null less often than it should. Also known is
that LM tests for homoscedasticity are invariant to different speci-
fications for the alternatives such as multiplicative heteroscedastic-~
ity and additive heteroscedasticity, as long as the heteroscedastic
structures share the same variables. For this matter, consult Bera
and Jarque (1981), and Bera and McKenzie (1986). Our empirical
model estimation provides the following numerical results when we
compare two logit specifications. For the first data set, the likeli~
hood ratio test for additive heteroscedasticity is 7.448 and that for
multiplicative heteroscedasticity [which is described in the Appen-
dix B], 4.226, while LM, is 2.694. For the second data set, the
likelihood ratio tests are 27.486 and 28.568 for additive and multi-
plicative heteroscedasticity respectively, while LM, is 24.650. In-
deed we find that LM, is smaller in magnitude than the likelihood
ratio test. Based on Davidson and MacKinnon’s finding of the poor
performance of LM, in testing for the coefficients in the heterosce-
dastic structure and our later Monte Carlo finding of the reliable
performance of the likelihood ratio test, we coné¢lude that both data
sets support the heteroscedastic specification over the homoscedas-
tic specification based on the likelihood ratio tests.

Also applicable to our model choice between the homoscedastic
and the heteroscedastic models are AIC, the sum of squared re-
siduals weighted by the estimated probabilities, and the sum of
squared residuals weighted by observed frequencies. For these, see
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Amemiya (1981).

To find whether the two model specifications in fact different in
some practical aspects, we first compare the closeness of the esti-
mated success probabilities to the observed frequencies, and then
we will assess the estimates of the changes in the success probabili-
ties given a change in an explanatory variable. For these, we will
use only the logit results from the first data set. Table A6 tabulates
the estimated probabilities together with the observed frequencies.
We find that out of 32 evaluation points the heteroscedastic success
probability estimates are closer to the observed frequencies at 18
points. At one point, the difference in the success probability esti-
mates is 0.2.

To further assess deviation of the homoscedastic model from the
heteroscedastic model, we look at the change in the probability of
{yi=1|x;}, or the change in the expected response given a
change in an explanatory variable. First, we have the following dif-
ferentiation of Pr(y;=1|x;)= € (y; | x;) from the homoscedastic
logit model and the heteroscedastic logit model:

OdAXD:1) i T,
Y —(\/g)exP i(‘\/-sr)xzbl (10)
[1+ exp it 7 ibl 17
QAWK B:a)) r T .
EYS :(ﬂai)exP{(_ﬂai)x"'B}

T

[1+ exp )il 17 (11)

{B2— (sgn) (i B) o ayf.

(11) shows that the incremental effect of explanatory variables on
Pr(y; =1 | x;) is not restricted to being the same when evaluated at
Pr(y;j=1|x)=p and Pr(y;=1]|x;)=1— p, while (10) shows
that the incremental effect is restricted to being the same. We
evaluate (10) and (11) at the mean value of xy, X, = 9.8887 using
the estimates in Table AZ2:
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_ QAL -
HOb = 3 Xy Cynkants)=(1,5,0) = 0.01783
IOA(:0))
HEO = T Dxy | CwreX)=150) = 0.01643
286 | ~
HOl - ale- 00X X3)=(1,01) — 0.01508
A A(:0)
HEL = o X ey Xguxg) =(L5,1) = 0.01190

We note that the difference between HOO and HO1 from the
homoscedastic model is the smaller than that between HEQ and HE1
from the heteroscedastic model. Hence, the two specifications seem
to differ sufficiently both in probability predictions and in predicted
changes in success probability.

Finally, we assess the implied degree of inconsistency of the
homoscedastic model in terms of estimated probabilities. First, the
probability limit b* of the homoscedastic MLE for b is obtained
under the assumption that the true model specification is heterosce-
daSth with ﬁOl = ,81, ﬂoz— ﬁz, ﬂo3— ﬂ3, apgy = 02, and a g3
=as from Table A2. By solving the following optimization problem:

max z EWynAb:1)
(12)
+ 31— €0l dnil— AGb:1),

where € is taken over the true (assumed) parameter values, we get
the following probability limits:> plimb; = —0.3619, plim52=
0.03828, and plimb; = 0.4419. The last column of Table A6 reports
the estimated probabilities evaluated at the above probability limits.
To measure the degree of inconsistency in terms of success prob-
ability predictions, we compare the columns 5 and 6. In general, the
implied asymptotic bias in terms of the discrepancy between the
estimated probabilities and the true assumed success probabilities

3The probability limits of the heteroscedastic logit MLE under the homoscedastlclty
assumption with bm = by, boz = b3, and bz = b3 from Table A2 are as follows: phmﬂm
= —0.3718, phmﬁoz = 0.03934, pl)m,Bog = 0.4408, plim a o2 = 0.00000, and plim a o3 =
—0.00000.
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seems relatively small except at one case where the bias is as large

as 0.204.

V. Numerical Experiment

In this section, we conduct two separate numerical experiments.
The first one is designed to evaluate further the degree of incon-
sistency of the homoscedastic MLE when the true model is heteros-
cedastic. The second one is to examine the empirical performance of
the likelihood ratio test to show that it is a reliable test to disting-
uish the heteroscedastic model from the homoscedastic model.

The first experiment assumes 6 sets of the true parameters,
which provide us with varying degrees of heteroscedasticity. We
consider the logit model based on the first data set investigated in
the previous section, but with the following sets of assumed true
parameter values:

Bol B oz Bos a oy @ o3

I [ —0.5918512 0.06794184 0.3376301 0.00078318 0.0
II | —0.5918512 0.06794184 0.3376301 0.0078318 0.0
III | —0.5918512 0.06794184 0.3376301 0.078318 0.0
IV | —0.5918512 0.06794184 0.3376301 0.78318 0.0
V | —0.5918512 0.06794184 0.3376301 7.8318 0.0
V1| —0.5918512 0.06794184 0.3376301 78.318 0.0

In the experiment, the original variance structure is further nor-
malized by the mean of the variance terms (1 4 z’;a)? where i =
1,--,n, to investigate the pure effect of increasing heteroscedastic-
ity. That is, the experiments from No. I to No. VI are designed to
increase the variability of the variance terms across observations,
with the mean magnitude of the variance terms held fixed* in all 6
experimental set-ups. Hence, the variance structure adopted in this
numerical study is

ot =(+za/ [+ 30 +za)]. 10)

The probability limits of the homoscedastic MLE, the deviations of

“If we do not apply this normalization, probability deviations first increase with heter-
oscedasticity and then they start to decrease since dominant magnitudes of the variance
terms implied by increasing unnormalized heteroscedasticity eventually drive all the suc-
cess probabilities close to 0.5.
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probabilities between estimated probabilities and true assumed
probabilities for 6 different sets of assumed parameter values are
compiled in Table A7. The following expected relationship

min( B oc/ o) < plim b < max(Bor/ @), k =1,2.3,

is observed, but o }’s, such that pllm bk = BOk/ak (k =1,2,3), are
not the same. In fact, ——
dasticity through a ¢, 1ncreases.5 It is also observed that incon-
sistency increases with heteroscedasticity, in terms of the devia-
tions of the estimated probabilities from the true assumed probabi-
lities.

The second experiment is a Monte Carlo study for a homoscedas-
tic probit model and a heteroscedastic probit model with an ex-
ponential variance structure (described in the Appendix B) to ex-
amine the empirical performance of the likelihood ratio test in dis-
tinguishing the two models. Here, the data for the explanatory vari-
ables are the same as those used in the first empirical examples, but
the disturbance terms for the latent index function are generated
according to N(0, 62%) where ;= exp(z;a) for the experiment
under heteroscedasticity, and according to N(0, 1) for the experi-
ment under homoscedasticity. The true models used in this Monte
Carlo study are the estimated homoscedastic probit model and the
estimated heteroscedastic probit model with exponential heterosce-
dastic structure, whose estimated coefficients are reported in
Tables A2 and Al0. For both cases, 100 replications with 1523
samples each are made. Table A8 summarizes the Monte Carlo re-
sults. Included are the sample means and medians of the 100 homos-
cedastic MLE’s and the 100 heteroscedastic MLE'’s, together with
the sample means and medians of the maximized loglikelihoods times
(—2). The table shows that when the true model is heteroscedastic,
the likelihood ratio test is 7.453 at the sample mean of the 100
replications and 8.006 at the sample median. On the other hand,
when the true model is homoscedastic, the likelihood ratio test is
1.816 at the sample mean and 1.101 at the sample median of the 100
replications. Table A9 tabulates the percentage of 100 replications
that reject the homoscedastic model in favor of the heteroscedastic
model at the varying significance level. The first column lists the

Hence, the common variance corresponding to a homoscedastic model before norma-
lization does not have an easily identifiable relationship with the variances in a heteros-
cedastic model.
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significance level chosen, the second column provides the empirical
power of the likelihood ratio test when the asymptotic critical
points based on X% is applied, and the last column corresponds to
the empirical size of the test. Even with this small number of re-
plications the closeness of the theoretical significance level and the
level of empirical Type I error for the likelihood ratio test is noted.
For example, if we set the significance level at 5%, then the empir-
ical Type 1 error is around 3%, while the power of the test is
around 55%. And, if we apply AIC in choosing the appropriate mod-
el, then we choose the heteroscedastic model correctly with the 55%
success rate when true is the heteroscedastic probit model, and we
choose the homoscedastic model correctly with the 89% success rate
when true is the homoscedastic probit model. From Tables A8 and
A9, we conclude that the heteroscedastic model is satisfactorily
distinguishable from the homoscedastic model by using the likeli-
hood ratio test.

VI. Conclusion

The qualitative response model with an explicit heteroscedastic
structure is studied. Then, the heteroscedastic MLLE is shown to be
consistent and asymptotically normal, while the standard MLE is
inconsistent under heteroscedasticity. From the estimation results
from the two real data sets, a heteroscedastic structure is shown to
be supported. It is also illustrated that the degree of inconsistency
from the homoscedastic ML estimation, in terms of probability pre-
dictions, can be very large as heteroscedasticity increases. A heter-
oscedastic model is successfully distinguishable from a homoscedas-
tic model by the likelihood ratio test. However, computation time
increases substantially due to nonconcavity of the loglikelihood
function and the added nonlinearity through the variance structure.
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Appendix A

TABLE Al
DATA ON SUBSAMPLE OF 1523 HOUSEHOLDS SELECTED FROM THE SURVEY
oF CONSUMER FINANCES (1969)

Household Disposable Income Those who moved Those who did not
(mid-range in $1,000) in 1967 or 1968 move

n, r, n, r,
2.875 32 13 43 18
4.500 36 15 69 24
5.625 35 24 45 21
6.250 24 14 34 16
6.750 45 35 45 18
7.250 34 29 48 22
7.750 26 19 56 27
8.250 27 20 41 24
8.750 32 19 51 23
9.375 31 26 73 38
10.075 53 34 51 26
11.000 39 24 89 50
12.000 43 30 86 41
13.500 35 28 105 69
16.000 32 26 78 41
21.250 25 20 60 41

Note: 1. n, : number of, families in the r-th category (I))

2. r,: number of families in the t-th category who bought consumer durables in
1968

3. xy,:variable identically equal to 1

4. xy, : the mid-range of the household disposable income used to define the
t-th category —that is, in the estimation I used x3 = x,; for every i in
1, where I, is the r-th category index set

5. x3,: dummy variable equal to 1 if the household moved in 1967 or in 1968,
and 0 otherwise. x3, = x3; for every i in I,
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TABLE A2
MaxiMuM LIKELIHOOD ESTIMATION (FIRST EXAMPLE)
Variable Probit Logit
Homo. Hetero. Homo. Hetero.
Main Equation
X, —0.413(0.0876) —0.678(0.2873) —0.372(0.0790) —0.592(0.2499)
X, 0.044(0.0076) 0.078(0.0342) 0.039(0.0070) 0.068(0.0296)
X3 0.494(0.0698) 0.387(0.1757) 0.441(0.0631) 0.338(0.1531)
Variance Equation
X, 0.082(0.0488) 0.078(0.0475)
X, —1.011(0.1764) —1.004(0.1745)
— 2 ax 2001.360 1993.902 2001.280 1993.832

Note: Standard errors are in parentheses.

TABLE A3

DATA SET MODIFICATION AND REDUCTION (ORDER OF PRECEDENCE)

Number of households on the original tape

Number of households vacant at the time of the census

Number of households with female (who is either head or spouse of
male head) not married or married but separated

Number of households with female (who is either head or spouse of
male head) not in the specified age range (25-55, inclusive) at
the time of census

Number of households with female (who is either head or spouse of
male head) neither black nor white

Number of households with female (who is either head or spouse of
male head) having farm income in 1979

Number of households with female (who is either head or spouse of
male head) having bad (i.e., allocated) labor data or truncated income

Number of households with female (who is either head or spouse of
male head) having nonfarm self-employment income

Number of households with male (who is either head or spouse of
female head) having farm or nonfarm self-employment income

Number of households with male (who is either head or spouse of
female head) having bad (i.e., allocated) labor data or truncated

income

94,205
(—) 8,021
(—)36,990

(—)15,976

(—) 1,549

(—) 203

(—) 9,593

(=) 334

(—) 3,009

(—) 3,493




146

SEOUL JOURNAL OF ECONOMICS

TABLE A3 (Continued)

Number of households with male (who is either head or spouse of (—) 99
female head) not present in the household
Number of households with female (who is either head or spouse of (—) 1,002
male head) not white
Total Eligible Households 13,486
Number of households picked up every 10th observation 1,348

TABLE A4
SUMMARY ON VARIABLES AND SAMPLE MEANS

Variable Description Sample Mean
Y Dummy on wife's annual labor force participation in 1979 0.6454
X, Constant term
X, Family income other than wife's wage income ($1,000) in  22.5677

1979
X3 Wife’s age (as of census date) 38.5475
X, Wife's completed grade (as of 1979) 12.4696
X5 Number of young children (0-6 yrs. of age in 1979, or 1-7 0.4303
of age in 1980)
Xs Number of older children (7-16 yrs. of age in 1979, or 0.8954
8-17 yrs. of age in 1980)
X, Number of adults in the household other than wife and 0.3197
husband (17 and over in 1979, or 18 and over in 1980)
Xs Dummy on SMSA's (urban dummy) 0.8190
Xy Southern residence dummy 0.3131
X0  Health disability dummy 0.0653
X11 Dummy of family living on social security income 0.0438
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TABLE A5
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MAXIMUM LIKELIHOOD ESTIMATION (SECOND EXAMPLE)

Variable Probit Logit
Homo. Hetero. Homo. Hetero.
Main Equation
X, 1.482(0.3277) 1.588(0.2732) 1.353(0.3103) 1.533(0.2987)
X, —0.015(0.0028) —0.010(0.0029) —0.014(0.0028) —0.010(0.0030)
X, —0.033(0.0053) —0.030(0.0048) —0.031(0.0049) —0.029(0.0052)
X, 0.084(0.0157) 0.035(0.0120) 0.078(0.0152) 0.035(0.0128)
Xs —0.631(0.0611) —0.503(0.1059) —0.580(0.0602) —0.490(0.1122)
Xs —0.092(0.0350) —0.089(0.0259) —0.087(0.0316) —0.087(0.0265)
X7 0.107(0.0598) 0.157(0.0768) 0.100(0.0546) 0.155(0.0771)
Xs ~—0.101(0.1009) —0.093(0.0641) —0.093(0.0914) —0.090(0.0628)
Xg —0.090(0.0809) —0.055(0.0500) —0.084(0.0730) —0.054(0.0490)
Xio —0.45000.1385) —0.315(0.1086) —0.409(0.1318) —0.309(0.1158)
X —0.367(0.1925) —0.235(0.1112) —0.332(0.1635) —0.229(0.1094)
Variance Equation

X, —0.013(0.0022) —0.012(0.0026)
Xs 0.615(0.3403) 0.711(0.3839)
X7 0.244(0.1382) 0.271(0.1613)

—2ax 1559.056 1532.335 1560.081 1532.335

Note: Standard errors are in

parentheses.
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TABLE A6
COMPARISON OF THE ESTIMATED PROBABILITIES

Xo; X3 P, F{homo.) Ffhete.) F{(plim homo.)
2.875 1 0.4063 0.5818 0.3818 0.5853
0 0.4186 0.3848 0.3573 0.3877
4.500 1 0.4167 0.6097 0.5665 0.6124
0 0.3478 0.4126 0.4052 0.4148
5.625 1 0.6857 0.6287 0.6297 0.6308
0 0.4667 0.4322 0.4344 0.4339
6.250 1 0.5833 0.6390 0.6538 0.6409
0 0.4706 0.4431 0.4493 0.4446
6.750 1 0.7778 0.6472 0.6695 0.6488
0 0.4000 0.4520 0.4606 0.4532
7.250 1 0.8529 0.6553 0.6827 0.6567
0 0.4583 0.4608 0.4713 0.4618
7.750 1 0.7308 0.6633 0.6939 0.6645
0 0.4821 0.4697 0.4816 0.4704
8.250 1 0.7407 0.6712 0.7036 0.6721
0 0.5854 0.4786 0.4914 0.4790
8.750 1 0.5938 0.6791 0.7120 0.6798
0 0.4510 0.4875 0.5007 0.4878
9.375 1 0.8387 0.6887 0.7211 0.6891
0 0.5205 0.4986 0.5118 0.4986
10.075 1 0.6415 . 0.6993 0.7298 0.6994
0 0.5098 0.5111 0.5235 0.5108
11.000 1 0.6154 0.7130 0.7393 0.7128
0 0.5618 0.5276 0.5378 0.5268
12.000 1 0.6977 0.7274 0.7478 0.7268
0 0.4767 0.5453 0.5520 0.5441
13.500 1 0.8000 0.7481 0.7579 0.7470
0 0.6571 0.5717 0.5712 0.5698
16.000 1 0.8125 0.7802 0.7701 0.7783
0 0.5256 0.6147 0.5984 0.6117
21.250 1 0.8000 0.8377 0.7857 0.8349
0 0.6833 0.6989 0.6411 0.6940

Note: f’, denotes the observed frequencies from the raw data. F(homo.) and F(hete.)
denote the estimates for Pr(y;=1 xj, x3) from the homoscedastic model
estimation and the heteroscedastic model estimation, respectively. F(plim
homo.) is the success probability estimates from the homosecdastic model but
evaluated at the plim of the parameter estimate assuming that the true model
is the estimated heteroscedastic model.
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TABLE A7

NUMERICAL STUDY ON HOMOSCEDASTIC MLE UNDER HETEROSCEDASTICITY
Lo . .o plim b, plim b3

No. plim b, plim b,  plim bs olim B, olim By
I —0.5902 0.06769 0.3378 —0.1147 —0.5724
II —0.5779 0.06573, 0.3398 —0.1137 —0.5879
III —0.5503 0.05917 0.3628 —0.1075 —0.6593
v —0.6147 0.06068 0.4283 —0.09828 —0.6938
\% —0.6497 0.06249 0.4497 —0.09618 —0.6922
VI —0.6537 0.06273 0.4522 —0.09595 —0.6918
N Max. dev. of est. Average Est. prob. Est. prob.
o prob. from true deviation at(1, X, 0) at(1, X3, 1)

I 0.001229 0.000351 0.5358 0.6805

I 0.01157 0.003225 0.5326 0.6785

III 0.07693 0.01836 0.5158 0.6729

v 0.1978 0.04074 0.4921 0.6782

vV 0.2307 0.04749 0.4856 0.6809

Vi 0.2342 0.04830 0.4848 0.6813

Note: The variance is normalized as in (10). The true assumed parameter values are
Bor = —0.5918512; By, = 0.06794184; L43 = 0.3376301; ay; =
0.00078318 (No. I), 0.0078318 (No. II), 0.078318 (No. III), 0.78318 (No. IV),
7.8318 (No. V), 78.318 (No. VI); and a g3 = 0.0. And the true probabilities at
(1, %2, 0) and (1, %5, 1) are 0.536214 and 0.680811, respectively.
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TABLE A8
MoNTE CARLO RESULTS
I(a) I(b) (a) II(b)
—20% e 2000.552 2002.487 1998.223 1999.917
—2 1993.099 1994.481 1996.407 1997.816
b, —0.392 —0.393 —0.424 —0.426
b, 0.0412 0.0416 0.0447 0.0437
by 0.502 0.493 0.495 0.491
Bor —0.709 —0.690 —0.428 —0.422
B oz 0.0835 0.0797 0.0456 0.0449
Bos 0.444 0.427 0.588 0.492
a2 0.0592 0.0592 —0.00127 0.00247
@ o3 —0.702 —0.670 0.0506 0.0246

Note: The true model for I(a) and I(b) is the heteroscedastic probit model with ¢; =
exp(z”, @) and the parameter values 3o = —0.726261, f,; = 0.085520, 8,
= 0.440229, a , = 0.060630, and «a o3 = —0.663690. And the true model for
II{a) and II(b) is the homoscedastic model with the parameter values by = —
0.413360, by, = 0.043738, and b3 = 0.493866. The above assumed parameter
values are from the estimation results (for the first empirical data set) of the
models described in the Appendix B. The numbers recorded under I(a) and

II(a) are sample means from 100 replications, while those recorded under I(b)

and II(b) are sample medians.
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TABLE A9
PERCENTAGE OF REPLICATIONS REJECTING A HOMOSCEDASTIC MODEL IN FAVOR OF A
HETEROSCEDASTIC MODEL AT THE SIGNIFICANCE LEVEL «
PriLRT = —2(*pax — luax) > X fral = @

Sig. level(a) When true is a hete. model When true is a homo. model
0.001 10 0
0.005 30 1
0.010 34 1
0.025 45 2
0.050 55 3
0.075 61 5
0.100 66 7
0.200 80 14
0.300 85 25
0.400 91 44
0.500 93 48
0.600 95 58
0.700 95 65
0.800 97 81
0.900 99 90

Note:The percentage rejecting a homoscedastic model in favor of a heteroscedastic
model based on Akaike information criterion is as follows:
1) When the true model is heteroscedastic — 55%.
2) When the true model is homoscedastic — 11%.
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TABLE A10
HETEROSCEDASTIC LOGIT AND PrROBIT MLE UNDER MULTIPLICATIVE
HETEROSCEDASTICITY
Variable Probit Logit
First Data Set
Main Equation
X, —0.726(0.2399) —0.643(0.2135)
X 0.086(0.0301) 0.076(0.0270)
X3 0.440(0.1494) 0.385(0.1325)
Variance Equation
X 0.061(0.0250) 0.061(0.0255)
X3 —0.664(0.2985) —0.690(0.2986)
—26 . 1997.191 1997.014
Second Data Set
Main Equation
Xi 1.164(0.3828) 1.170(0.4248)
X, —0.007(0.0032) —0.007(0.0036)
X3 —0.022(0.0072) —0.022(0.0081)
X, 0.026(0.0125) 0.027(0.0139)
Xs —0.367(0.1387) —0.374(0.1543)
Xe —0.065(0.0266) —0.066(0.0296)
X; 0.124(0.0709) 0.126(0.0752)
Xs —0.068(0.0509) —0.068(0.0539)
X —0.039(0.0385) —0.040(0.0403)
X10 —0.230(0.1132) —0.233(0.1217)
X1 —0.162(0.0978) —0.165(0.1035)
Variance Equation
X3 —0.026(0.0097) —0.024(0.0105)
X 0.619(0.2209) 0.665(0.2281)
X; 0.438(0.1718) 0.446(0.1771)
— 2 ax 1531.253 1531.513

Note: Standard errors are in parentheses.
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Appendix B

Here, probit and logit models with the exponential heteroscedastic
structure are considered. By the exponential heteroscedastic struc-
ture or multiplicative heteroscedasticity, we mean

0?2 = exp(2z;a) or o;=exp(z;a). (B1)

Then, we arrive at the same expression for the loglikelihood func-
tion as in (1) once (B1) is noted.

First, we consider the heteroscedastic probit model and then the
heteroscedastic logit model. Table A10 tabulates the estimation re-
sults from both grouped and ungrouped data sets.

Bl. Heteroscedastic Probit Model

With the exponential heteroscedasticity structure, we obtain the
following gradient vector, Hessian matrix and the inverse of the
asymptotic variance-covariance matrix from the heteroscedastic
probit specification:
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B2. Heteroscedastic Logit Model

With the exponential heteroscedastic structure, we obtain the fol-
lowing gradient vector, Hessian matrix and the inverse of the

asymptotic variance-covariance matrix from the heteroscedastic
logit specification:
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The formulae to evaluate the change in the expected response or
the success probability due to change in one explanatory variable
(x9;) become

o A; T ,
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where A; = A(x/B:0;) and A*; = A(x/b:1).
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