원격탐사를 이용한 북한의 산림황폐화 현황 조사

박종화* · 유재심**

--- 목차 ---

I. 서론
II. 북한 산림 황폐화 현황 연구
 1. 북한의 토지이용분류 체계
III. 연구 방법
 1. 연구 대상지
 2. 영상자료
 3. 영상분류
IV. 연구 결과 및 고찰
 1. 지피 유형의 월별 NDVI 곡선
 2. 영상분류 정확도 검사
 3. 북한의 지피분류 결과
 4. 북한의 지피분류 변화 추세
 5. 황폐산지의 유형구분
V. 결 론

I. 서 론

북한은 1995년 여름 대홍수 이후에도 홍수, 산사태, 해일 등의 자연재해가 반복하였고, 농경지의 식량생산 기반을 심각하게 훼손하여 식량부족과 곡물급이 지속되고 있는 것으로 알려져 있다. 북한은 해방 이후의 공산당 정권은 자연개조에 의한 농업생산기반 확충노력을 경주해 왔다. 소위 천리마운동, 100일 전투 등과 같이 농민은 물론 학생, 군인, 도시민을 총동원하는 사례도 많았다. 북한의 산지개간은 다락발과 비탈발의 면적을 증대시키고 있다. 다락발은 경사지에 소단을 둘어서 농경지를 조성하는 것이며, 남한의 경우에는 남해도의 달팽이로 이 대표적이다. 반면에 비탈발은 인접한 산지에 비해서 경사도가 완만한 토지를 하나의 필지로 조성하는 것이며, 일반적인 발과 비탈발을 확실히 구분하는 경사도 기준은 없다. 북한의 압록강, 두만강변의 중국망에서는 북한에는 경사도가 10° 이상인 비탈발을 도처에서 볼 수 있다.

* 서울대학교 환경대학원 교수, 원장
** 서울대학교 환경대학원 석사과정 수료
북한은 산악형 지형과 사회주의 경제체제 하에서의 비효율적인 자원 배분 등으로 인하여 식량생산성이 낮기 때문에 심각한 식량 부족 사태가 장기간 지속되고 있다. 북한은 외화가 부족한 상태에서 미소 간의 냉전시대 중에는 러시아와 중국과 같은 사회주의 우방의 원유와 식량원조를 받아서 경제체제를 유지할 수 있었다. 러시아가 해체된 1991년 이후에는 대외원조는 급격히 감소하고, 자연 재해의 급증에 따라서 식량문제의 심각성이 커지고, 남한의 대북원조에 의해서 식량난은 부분적으로 해결해 왔다.

북한은 정치적, 군사적 대립 상황에서 엄격한 정보 통제를 유지하고 있다. 세계제2차대전 중에 영국의 처칠 수상은 소련 모스크바의 크렘린궁에서의 스탈린의 의사결정 과정을 알 수가 없기에 천의 장막(Iron curtain)이라는 표현을 사용하였다. 포 leo 헤밍학 이후의 중국 본토에서의 정치 외교적 결정 과정을 알기 어려운 상황에서 주의 장막(Bamboo curtain)이라는 용어도 등장한 바 있다. 김일성과 김정일 정권의 정보 통제도 여타 공산당 정부와 유사한 점이 많아서 조선을 말기에 외국인의 온두랑조(Hermit kingdom)라는 표현을 하던 상태와 유사한 점이 크다. 북한은 미국, 일본, 한국 등의 서방국과 군사적, 정치적 대립 관계인 상태에서 핵무기를 개발하고, 경제적 미사일 등의 군사기술 개발에 국가의 투자체계를 우선적으로 배분하는 소위 선군정치 체제를 유지하고 있다. 사회주의 국가의 자금자족 위치의 계획경제 체제의 비효율성이 1995년 이후의 홍수, 산사태, 해일 등의 자연 재해로 인하여 계속되는 농작과 기근으로 소위 고난의 행군을 계속하고 있다.

북한 내부의 산림황폐화 및 농경지 확장 정책의 부작용에 대한 신뢰성이 큰 동계는 거의 발표되지 않는 상황에서 원격탐사를 이용한 분석이 부분적으로 진행되고 있다. 미국 농무성은 1995년 여름의 북한 대홍수 피해를 조사하기 위해서 SPOT 위성영상에 이용하였고, 인터넷을 이용하여 <그림 1>과 같이 공개하였다. 이 영상은 녹색, 적색, 근적외선을 RGB로 표현하였기 때문에 식생생태가 활발한 산림과 농경지는 붉은색을 띄는 위색사진(False color

<그림 1> 신의주 일대의 홍수 피해 SPOT 영상(좌, 94년 8월 19일; 우, 97년 7월 12일)
image)이다. 홍수 발생 전년도인 1994년 8월 19일에는 압록강 하류의 신의주 일대는 물론 북쪽의 중국 단둥 일대도 식물생육이 활발한 것을 알 수 있다. 그러나 1997년 7월 12일 영상에서는 중국측은 여전히 식물생육의 증가인 붉은색이 넓게 분포하는 반면에 북한측은 홍수피해에서 전혀 휴복되지 않은 상태를 볼 수 있다. 첫째, 압록강에 위치한 위화도에는 홍수에 의해 운반된 흙모래가 농경지의 태반에 걸쳐서 퇴적된 모습을 볼 수 있다. 둘째, 북한측의 압록강 지류변에 조성된 논의 대부분은 홍수 중에 침수된 물이 빠저지 않아서 미가 생육하는 모습을 확인할 수 없다. 미국농무성의 당시의 홈페이지에서는 다른 지역의 홍수피해도 보여주고 있었다.

근래에는 남북한의 긴장상태가 지속되고 정부간 대화 체널이 거의 중단된 상황에서 우리 정부는 북한 산림 복구사업에 대해서는 무조건 지원하겠다는 의사를 표명하고 있다. 북한의 산림황폐화, 농업기반의 봉쇄, 주민의 식량부족 문제는 체계적인 접근법이 필요하다. 동일조의 북한 진출을 희망하는 기업들은 교토의정서에 입각한 CDM사업을 활용하여 탄소배출권을 확보하기 위해서 북한산림구보 관리에 관심을 갖고 있다. 원격탐사를 이용한 산림분석 및 황폐지조사 기술의 발전에 따라서 산림청에서도 북한 산림 황폐화 현황을 조사하기 위해서 2008년부터 SPOT 영상을 이용한 원격탐사를 진행 중이며, 본인도 공동연구자로서 연구에 참여하고 있다. 미국의 NASA가 중요로 영상을 공급하는 MODIS는 공간 해상도가 낮은 반면에 생물계획 특성에 입각하여 국토 차원에서의 북한의 산림 황폐화를 조사하기에 적합하다. 이와 같은 조사는 북한의 산림복구를 위한 공동사업의 추진계획 수립에 유용하게 사용할 수 있다.
본 연구의 목적은 다음과 같다. 첫째, 위성영상 이용하여 북한의 최근의 지표를 분류하는 것이다. 본 연구는 MODIS영상 이용한 다중기영상분류기법에 입각하여 산림식생과 농작물의 생물계절 특성을 기준으로 지표를 분류한다. 둘째, 북한의 산림환경화 특성과 추세를 분석하는 것이다. 북한은 해방 이후 지속적인 산지개간 및 농경지 확장정책을 시행하였고, 1990년대 중반 이후의 소외 고난의 행군 기간 중에 산지 황폐화가 가속화 되고 있는 것으로 추정되지만 최근 통계자료가 없는 한계가 있다. 셋째, 산림환경화에 따른 수자원 함양기능의 저하, 농경지 생산성 저하, 생물종다양성 감소 등의 부작용을 시급히 해소하기 위한 산림복구 우선순위를 제시한다. 근래의 지구온난화 추세를 타파하기 위해서 제안된 A/R CDM, REDD 등의 국제적인 협약에 근거하는 황폐화 저감 및 복원을 위해서는 산림복구의 우선순위를 설정하는 것이 필요하다.

II. 북한 산림 황폐화 현황 연구

1. 북한의 토지이용분류 체계

북한의 토지법은 국토를 농업토지, 주민거주토지, 산림토지, 산업토지, 수역토지, 특수토지의 여섯종류로 구분하며, 이것은 사회경제적 기준에 의해서 분류되는 토지이용분류(Land use classification) 체계이다(허재원, 2000). 산림토지는 산림이 조성되어 있거나 조성될 것이 예상되는 산야와 그 안에 있는 여러 가지 이용지로 규정하고 있다. 금강산과 백두산과 같은 보호구역과 군사시설은 산림이 유지되더라도 특수토지로 분류되는 반면에 원격탐사에 의한 지표분류(Land cover classification)는 토지의 과장대별 반사특성을 기준으로 하기 때문에 토지분류 체계의 차이로 인해서 분류지가 일치되지 못하는 한계가 있다.

북한의 산림 현황에 관한 통계는 극히 한정된 상태에서도 산림면적의 축소 현황을 알 수 있다. UNEP는 북한 경부의 적극적인 협조에 의해서 1990년, 1993년, 1996년의 전국 토지이용현황을 <표 1>과 같이 발표한 바 있다. 북한의 산림은 1990년의 90,200km²에서 1993년과 1996년에 각각 82,110km²와 81,830km²로 감소하였다. 즉 1990년대 전반 6년 기간 중에 산림면적은 8,370km²가 감소하여 연평균 1,195km²씩 감소하였다. 이것은 북한 산림이 매년 쇠퇴를 겪으며 2배씩 감소한 것을 의미한다. 북한의 소외 고난의 행군이 2000년대 초반까지 계속된 것을 감안하면 산림황폐화도 지속되고 있는 것으로 판단된다.

북한의 산림환경화에 관한 연구가 일부 진행된 바 있다. 본인은 북한 산림 황폐화를 CDM에 입각한 선포배출권 확보와 연관시키기 위해서 AVHRR(Advanced Very High Resolution Radiometer) 영상을 이용하여 분류한 바 있다. 본 연구는 교토의정서의 CDM기준을 고려하여 1989년도 AVHRR 영상자료를 사용하였고, 이 기준은 기준년도인 1990년의 산림 유무를 기준으로 재조림(Reforestation)과 신규조림(Afforestation)을 구분하기 때문에 지표분류체계는 산림,
표 1) 북한의 토지 분류 체계

<table>
<thead>
<tr>
<th>구분</th>
<th>구분기준</th>
<th>이용 및 관리주체</th>
</tr>
</thead>
<tbody>
<tr>
<td>농업토지</td>
<td>정착할 수 있는 토지</td>
<td>협동농장 및 기관, 기업소, 단체가 이용, 관리</td>
</tr>
<tr>
<td>주민지구토지</td>
<td>시, 읍, 헌하지구의 건축용지와 그 부속지, 공공 이용지와 농촌 건설지대</td>
<td>기관, 기업소, 단체가 이용 중앙의 도시경정기 관과 지방행정 경제위원회가 관리</td>
</tr>
<tr>
<td>산림토지</td>
<td>산림이 조성되어 있거나 조성할 것이 예상되는 산야와 그 안에 있는 여리 가지 이용지</td>
<td>기관, 기업소, 단체가 이용, 관리</td>
</tr>
<tr>
<td>산업토지</td>
<td>공장, 광산, 탐광, 발전시설 등 산업시설 실물이 차지하는 토지와 부속토지</td>
<td>기관, 기업소가 이용, 관리</td>
</tr>
<tr>
<td>수역토지</td>
<td>연안, 연해, 강하저, 호수, 지수지, 관개용수로 등이 차지하는 일정한 지역의 토지</td>
<td>기관, 기업소, 단체가 이용 국토관리기관 또는 농업지도 기관이 관리</td>
</tr>
<tr>
<td>특수토지</td>
<td>협업전적지, 협업사적지, 문화유적지, 보호구역, 군사용 토지 등 특수한 목적에 이용되는 토지</td>
<td>기관, 기업소, 군부대가 이용 해당 중앙기관과 지방행정경제위원회 및 국가기관, 기업소, 군부대가 관리</td>
</tr>
</tbody>
</table>

자료: 하재완 (2000)

표 2) 북한의 토지 이용 통계 (면적: km²)

<table>
<thead>
<tr>
<th>구분</th>
<th>1990</th>
<th>1993</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>농업토지</td>
<td>20,380</td>
<td>20,870</td>
<td>21,030</td>
</tr>
<tr>
<td>산림토지</td>
<td>90,200</td>
<td>82,110</td>
<td>81,830</td>
</tr>
<tr>
<td>산업토지</td>
<td>1,890</td>
<td>1,960</td>
<td>1,990</td>
</tr>
<tr>
<td>수역토지</td>
<td>7,100</td>
<td>7,200</td>
<td>7,270</td>
</tr>
<tr>
<td>주민지구토지</td>
<td>1,370</td>
<td>1,520</td>
<td>1,570</td>
</tr>
<tr>
<td>합계</td>
<td>120,940</td>
<td>113,660</td>
<td>113,690</td>
</tr>
</tbody>
</table>

농경지, 건폐지, 수면으로 정하였다. 영상분류는 1989년의 MODIS영상을 이용한 산림식생과 농작물 등의 생물계절 특성에 입각한 무감독분류 기법인 ISODATA 알고리즘을 이용하였다 (Lillesand, 2000). 그 결과 북한의 1989년도 산림면적은 국토의 77.63%인 95,004km²로 판명되었다. 이 면적은 북한정부의 1990년도 공식 통계인 90,200km²보다 4,796km² 큰 것이며, 전술한 마와 같이 북한의 산림이 울창한 자연보호구역과 군사시설이 위성영상을 이용한 지피분류에서는 산림면적에 포함되는 점을 감안하면 사실에 근접하는 것으로 판단된다. 또한 AVHRR영상은 공간해상도가 1.1km로 낮기 때문에 산 속에 산재하는 소규모 황폐지와 개간산지는 산림으로 오분류될 가능성이 있다.
남한의 산림과학원에서도 위성영상 활용한 지리 분류를 시행하고 있다(이승호, 1998). 본 연구는 Landsat TM 영상을 이용하여 북한의 국토를 분류하였고, 그 결과는 <표 3>과 같다. 이 연구 결과는 다음과 같이 요약할 수 있다. 첫째, 북한의 산림적도는 84,460km²으로서 국토의 68.1%를 점유하고 있다. 이 수치는 전술한 북한의 공식발표 자료와 상당한 차이가 있는 것으로서 산림화폐화 추세를 반영할 가능성이 있다. 둘째, 연구자는 산림화폐지의 위성영상 반사특성이 초지와 유사한 점을 근거로 국토의 8.6%인 10,660km²를 초지로 분류하였다. 즉 벼쇄지와 임목지가 50%에 미달되는 미림목지는 초지로 분류하였지만 북한의 고산초지와 하 천변 초지의 면적은 본 연구의 초지면적에 비해서 현저히 비율이 높은 것으로 추정된다.

본 연구팀은 MODIS 영상을 이용한 북한의 산림분류 및 황폐화 실태를 계보하고 있다. MODIS 영상은 2001년부터 제공되고 있으며, 공간해상력이 250m로 AVHRR에 비해서 개선되었고, 위성영상 활용한 식생활력도 계산 능력이 상당히 개선되었다. 본 연구팀이 북한의 지 딼를 분류한 결과는 <표 4>와 같다(박중화, 2005). 본 연구에서는 양호한 산림과 황폐산지의 구분이 곤란하여 산림적도 73,861km², 초지 11,036km², 황폐지 1,670km²의 결과를 얻었다. 이 산림 면적은 북한의 1996년도 공식통계(UNEP 2003)와 Landsat TM을 이용한 결과(이승호, 1998)에 비해서 각각 7,969km²와 10,559km² 작은 것이다. 이 당시에 산림과 황폐산지의 구분이 곤란했던 것은 영상 중에 구성을 완벽하게 제거하지 못한 때문으로 평가되어 추후의 MODIS 연구에서는 영상자료의 검증에 한층 노력을 기울였다.
Ⅲ. 연구 방법

1. 연구 대상지

북한의 국토 면적은 122,762km²로서 남한에 비해해서 22,000km² 정도 넓은 편이다. 북한의 지세는 전반적으로 서부와 남부는 표고가 낮고, 경사도가 상대적으로 완만한 구릉지대이다. 이곳은 고구려 시대 이후로 평양, 의주, 해주 등의 도시가 입지하고, 다수의 취락이 분포하고 있다. 평안남도, 황해남도, 황해북도는 김일성-김정일 치하에서 서해감문 조성, 대성호 관계수로 조성 사업 등을 추진하여 북한의 곡창지대로 발전되었다. 개성-평양, 평양-묘향산, 신의주-평양을 연결하는 철도와 고속도로의 가시온 내에는 대규모 산지 개간사업으로 인하여 급격한 변화가 나타나는 상황에서 난방 및 취사를 위한 산림 벌채도 심각한 실정이다. 반면에 중국과 접경하는 백두산을 기점으로 홋령산맥, 마천령산맥, 남립산맥과 같이 해발 1000m를 초과하는 산이 다수 분포하고 있다. 백두산의 화산폭발에 의해서 분출된 염정난 양의 화산재는 개마공원과 백두고원에 넓게 분포하고 있다. 북한의 동북부는 급경사와 고지대로 인하여 홋령도 동해안에 위치하는 홍남, 함흥, 청진, 나진산봉 이외에는 도시 개발이 상대적으로 둔한 편이다.

북한은 대륙성 기온의 영향으로 년평균 기온 9.0~10.0℃, 겨울 평균 기온 -5.5℃으로서 난한에 비해서 상당히 추운 편이다. 강수량도 지역에 따라 편차가 상당하여 내륙에는 560mm, 서해안에는 년평균 1520mm의 강수량을 갖는다. 이러한 기후조건은 북한을 중위도 지방의 전형적인 온대림의 분포와 야고산 식생대 분포에 적합한 것이다. 북한의 온대 활엽수림에는 신갈나무, 졸참나무, 흰나무는 물론 소나무와 고나무와 같은 집엽수가 넓게 분포하고 있다. 해발 1000m를 초과하는 개마고원과 백두고원 일부에는 분비나무, 가문비나무, 종비나무 등의 상록 집엽수림과 이갈나무림이 분포하고 있다. 일제하에서 북한의 산악지대에서는 대규모 산림벌채 사업이 진행되었고, 해방 이후에는 북한 정부의 산림보호 정책의 결과 이차림이 복구되는 중이다(공우식, 2006).

개마고원 일대에는 북한의 식량난으로 인하여 농경지 확산 정책을 활발하게 추진하고 있다. 특히 백두산 용암대저 산에 위치하여 이갈나무와 같은 한대성 집엽수 지대인 대청단군은 대규모 감자 재배지로서 조성되었다. 이 지역에서의 집업수림 파괴 및 농경지 면적 확장 현상은 세계식량기구(Food and Agriculture Organization)의 홈페이지에도 소개되고 있다. 근래에 삼지연공항을 경유하여 백두산을 다니러 갔던 관광객은 여행 중에 산불연소 장면을 목격하기도 하고, 도로변에 남겨진 환풍구의 후방에 넓은 산불폐해 지역을 관찰한 목격담을 전하고 있다. 이것은 이 지역에서 현재에도 산불을 이용한 산림 파괴 및 농경지 확장사업을 적극적으로 추진함을 증명하는 것이다. 개마고원과 백두고원에 남아 있는 집업수림 지대는 호랑이, 표
법, 반달공, 대륙사슴 등과 같은 법적보호종 야생동물의 서식지이기 때문에 보전가치가 대단히 높은 곳이다.

2. 영상자료

본 연구는 MODIS 영상자료를 이용하였다. MODIS는 미국의 NASA가 2001년도에 발사한 지구환경감시위성인 AQUA와 TERRA에 탑재되어 매일 아침과 저녁에 동일 궤도를 지나면서 영상을 수집한다. 공란해상력은 250m, 500m, 1000m의 세 종류이며, 광선 파장대 0.405 μm 와 14.385 μm 사이에 총 36개 밴드의 영상을 수집한다(http://modis.gsfc.nasa.gov/). 본 연구는 공란 해상력 250m의 적색과 근적외선 파장대 반사면을 이용한 정규식생지수(Normalized Difference Vegetation Index)를 이용하였다.

\[\text{NDVI} = (\text{NIR} - \text{RED}) / (\text{NIR} + \text{RED}) \]

위의 공식에서 NIR (Near Infra Red)과 RED는 MODIS 센서의 근적외선과 적색 파장대의 측정치를 의미한다. 생명이 외형한 식생은 근적외선 파장대의 반사면이 높고, 스트레스를 받아서 생명이 병린 식생은 적색 파장대의 반사면이 높은 특성을 갖는다. 따라서 여름철에 생명한 생명을 하는 산림과 농작물은 양수율을 갖는다. 반면에 구름, 눈, 어둠, 물 등은 가시광선의 반사면이 근적외선의 반사면 보다 높은 특성으로 인하여 NDVI는 양수율을 갖는다 (Lillesand, 2000). 이와 같은 특성을 이용하여 일주일 혹은 일개월 간의 동일 측정의 NDVI 중에서 최고치를 합성한 파일은 구름의 영향을 제거하고, 식생의 생명특성을 관찰하는 데 이용할 수 있다. 이러한 기법을 MVC(Maximum Value Composite)라고 한다(Heute, 2002). 미국의 NASA는 공란해상력 250m의 16일과 월별 NDVI MVC 파일을 제공하고 있으며, MOD 13(Gridded NDVI)으로 명명하고 있다. 우리나라와 같이 여름철의 무기중에는 16일은 물론 월 단위 MVC도 구름을 완벽하게 재거하지 못하는 경우가 있기 때문에 본 연구는 16일 계기 영상을 사용하지 못하고 월별 NDVI MVC 파일을 이용하였다.

<그림 2>는 본 연구에서 2008년도 MODIS NDVI자료를 이용하여 2008년 6월의 MVC 영상 을 합성하여 구름을 제거한 영상을 합성하고, 다시 1-12월의 MVC영상 Layer stacking하여 영상분류를 위한 2008년도의 MODIS NDVI Database를 구축하는 과정을 보여 주고 있다.

3. 영상분류

모든 식물은 논중 기온 및 강수량 분포에 작용하여 독특한 생육 패턴을 가지며, 그 생육 특성에 맞지 않은 시기에 수집된 영상의 분류는 큰 오차를 초래할 가능성이 크다. 즉 식물은 봄철의 발아 혹은 개시기, 여름철의 생장, 개화 및 결실, 가을의 단풍, 겨울의 휴眠과 같은 주
기적인 생육특성을 갖는다. 이와 같은 식물의 특성을 생물계절(Phenology)이라고 한다. <그림 3>은 10월에 파종한 거울밀이 거울동안에는 눈으로 피복되고, 3월에 생육을 시작하여 6월말
에 수확하며, 수확 이후 눈이 오기까지는 밭망이 노출되는 것을 보여주고 있다(Jensen, 2000).
이 경우 3월-6월의 위성영상은 이용하여 이 토지는 농경지로 분류되고, 수확 이후에는 밭
망으로 분류되어 산림화폐지 혹은 도시의 나데지와 구분할 수 있게 된다. 북한의 산림화폐지
의 대부분은 비타밀과 구분하기 곤란한 실정이다. 반면에 토름철에는 진출한 바와 같이 구름
으로 인하여 지표분류에 적합한 영상을 찾기가 어렵다. Google Earth는 전세계의 고해상도 영
상 서비스를 제공하지만 영상의 대부분은 휴면기 영상으로 구성되고 있다. 이것은 토름철
의 식물생육이 완성된 시기에는 구름으로 인하여 좋은 위성영상 얻을 가능성이 대단히 낮
기 때문이다.
본 연구는 2008년 MODIS영상의 NDVI지수를 이용한 다중시기 분류기법(Multitemporal
classification)을 이용하여 북한의 지표분류 및 산림화폐화를 분류하였다(Lillesand, 2000). 일반
적인 위성영상은 가시광선, 근적외선, 멜티밴드에 다수의 센서를 배치하고, 각 물체가 파장대
별로 상이한 반사율을 갖는 특성을 이용한 다중분광 분류기법(Multispectral classification)을 이
용하여 영상을 자동분류 한다. 미국이 1972년에 발사한 최초의 지구자연상태위성인 Landsat
TM은 공간해상력은 각각 30m, 7개의 밴드, 매 16일마다 동일 지점의 영상을 주기적으로 제
공하여 범지구적인 지표분류에 장기간 이용되고 있다. 이어서 1986년에 발사된 프랑스의
SPOT 위성은 공간 해상력 10m 및 동일지점 재발문시기를 단축하였다. 이와 같은 위성의 가시
광선대 영상은 구름에 의해서 차단되기 때문에 우리나라의 식물생육 기간 중에는 북한 전역
을 커버하는 영상을 얻을 수 없는 한계가 있다.

본 연구의 영상분류 기준은 표 3과 같다. 즉 영상은 산림, 황폐산지, 농경지, 수면, 건폐
지의 대분류 기준을 적용한다. 산림과 황폐산지의 기준은 식물율 50%를 기준으로 한다. 즉
각 층층에서 식물이 점유하는 비율이 50% 이상인 산지는 상록침엽수림, 낙엽침엽수림, 황엽
수림, 혼합림으로 구분된다. MODIS는 공간 해상력이 250m로서 Landsat TM 보다 현재히 낮
지만 생물계설 특성으로 인하여 이와 같은 분류가 가능하다. 산림과학원의 임상도 분류기준
에 의하면 한 해수 혹은 침엽수의 비율이 75% 이상인 경우에는 순림으로 분류하고, 이외의
경우에는 혼합림으로 분류한다. 북한에는 급경사지의 산림을 개간하여 조성한 다락발과 비탈
발이 분포하고 있는 현실을 감안하여 영상분류에 의한 분류결과에 DEM을 이용한 경사도를 적용
하여 일반적인 논, 발과 개간산지를 구분하였다. 이것은 개간산지를 산림 복구 대상지로 분류
하는 우리나라 산림청의 기준에 일관한 것이다. 산림과학원의 영상분류 담당자와는 개간산지의
경사도 기준이 정해지지 않은 것이 감안하여 북한에는 12°를 적용하는 것을 추천하여 본
 연구에 적용하였다. 북한의 개간산지를 산림으로 복구하는 것은 식량생산량을 축소시키는 단기
적인 부작용으로 인하여 북한이 동의하지 않을 가능성이 있다.

본 연구의 영상분류는 무감독분류(Unsupervised classification) 기법을 채택하였다. 우리나라
의 연구자는 북한 내부를 방문하여 지상보조자료(Ground truth data)를 직접 수집하고, 이것을
(표 5) 북한 지리분류 기준

<table>
<thead>
<tr>
<th>대분류</th>
<th>소분류</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>산림</td>
<td>상목집업수림</td>
<td>식피율 > 50%</td>
</tr>
<tr>
<td></td>
<td>낙엽활엽수림</td>
<td>식피율 > 50%</td>
</tr>
<tr>
<td></td>
<td>활엽수림</td>
<td>식피율 > 50%</td>
</tr>
<tr>
<td></td>
<td>혼효림</td>
<td>식피율 > 50%</td>
</tr>
<tr>
<td>황해산지</td>
<td>무림목지</td>
<td>식피율 < 50%</td>
</tr>
<tr>
<td></td>
<td>개간산지</td>
<td>농경지 중에서 경사도 > 12°</td>
</tr>
<tr>
<td>농경지</td>
<td>논</td>
<td>논 중에서 경사도 > 12°</td>
</tr>
<tr>
<td></td>
<td>발</td>
<td>발 중에서 경사도 > 12°</td>
</tr>
<tr>
<td>수면</td>
<td>수면</td>
<td>습지, 간척지, 임진</td>
</tr>
<tr>
<td>건폐지</td>
<td>건폐지</td>
<td>취락, 산입단지, 나대지</td>
</tr>
</tbody>
</table>

감독분류(Supervised classification)를 위한 훈련지역(Training area) 자료로 사용할 수 없는 제약 때문이다(Lillesand, 2000). 본 연구 팀은 북한의 평양, 묘향산, 금강산, 개성, 백두산을 관광객으로 탐방하였지만 북한의 규정상 GPS를 이용한 지상자료 수집이 불가능하였다.

본 연구는 전술한 바와 같이 2008년도 월별 MODIS NDVI 자료를 이용하여 가장 대표적인 무감독분류기법인 ISODATA 분류 기법을 활용하여 65개의 클러스터(Cluster)를 추출하고, 전문가 지식을 이용한 의사결정 방식(Decision tree classifier)을 이용하여 클러스터를 병합하고, 명명하였다. 즉 각 픽셀의 개서기, 생육기, 단풍기, 휴면기의 시기와 변화 정도 등의 생물계절 특성에 입각한 다기기 분류기법을 적용한 것이다. 예를 들면, 상목집업수림, 낙엽집업수림, 낙엽활엽수림, 혼효림은 6월부터 9월의 생육기 중에는 NDVI 수준의 변화가 크지 않다. 겨울 중에는 상목집업수림은 상당한 NDVI를 가지며, 낙엽활엽수림은 대단히 낮은 NDVI를 갖고 때문에 상이한 클러스터로 분류된다. 저지대 남향 비탈면에 분포하는 낙엽활엽수림과 고지대 적설지역의 낙엽활엽수림은 다른 클러스터로 분류될 수 있지만 해당 클러스터의 월별 NDVI 패턴, 분포도, 표고, 경사도 등을 비교하여 유사한 클러스터를 병합하고 명명할 수 있다. 분류 결과 획득한 65개의 클러스터는 전문가 지식을 활용한 병합 및 명명 과정을 거쳐서 북한의 지리분류도를 출력하였다(Park, 2009).

위성영상을 이용한 지리분류 결과는 그 정확도를 검증하는 것이 필수적이다. 일반적으로 연구대상지 내에서 각 지피 유형별로 충분한 수의 지상보조자료를 수집하여 영상 분류 결과와 분류 오차 여부를 확인한다. 그 결과는 오차행렬표(Error matrix)를 만들고, 전체 분류정확도와 Kappa 계수를 계산한다. 북한에서 지상보조자료를 직접 수집하는 것은 허용되지 않는 한계를 극복하기 위해서 우리 팀은 지금까지 두가지 방법으로 분류정확도 검증과 기준자료 수집하였다. 첫째는 남한의 DMZ 경경지역, 중국의 암록강과 두만강변 등을 방문하여 각

IV. 연구 결과 및 고찰

1. 지피 유형의 월별 NDVI 곡선

MODIS 2008년도 월별 NDVI를 다중기분류기법을 이용한 무감독분류를 시행하여 추출된 65개의 클러스터를 전문가지식을 이용한 클러스터 병합 및 명명을 시행하였다. 본 연구에서 는 각 클러스터에 포함된 식생의 월별 NDVI곡선으로 알 수 있는 개서기, 극상기, 단풍, 휴만기 등의 생물계절 특성을 기초로 하고, 해당 클러스터의 월별 NDVI 균균치와 표준편차, 클러스터에 소속된 픽셀의 분포 위치, 표고, 경사도를 기초로 북한의 지피를 분류하였다(Park, 2009). 북한의 지피는 <그림 4>에서 보는 바와 같이 수면, 건폐지, 무림목지, 상목침엽, 낙엽침엽, 낙엽활엽, 혼합림, 논, 밭의 9종류로 분류하였다. 이 그래프의 x축은 월, y축은 평균 NDVI를 의미하며, 분류결과는 다음과 같이 요약할 수 있다. 첫째, 1-4월 중의 수면의 평균 NDVI는 음수값을 갖는다. 그러나 5-11월의 NDVI가 양수값을 갖는 것은 수면식생 혹은 수생식물의 반성으로 인하여 픽셀의 식생지수가 양수값을 갖기 때문이다. 특히 9월의 NDVI값이

![그림 4] 지피 유형별 월별 NDVI 곡선
건배지 보다 높은 것은 북한의 수면 내부에 토사퇴적적으로 수심이 중후택시 갑대, 부들, 수련 등의 수생식물이 번성하는 경향이 심한 것을 보여 준다. 또한 MODIS의 250m 공간해상력으로 인하여 수면예심의 생육도 상당한 영향을 미치는 것으로 판단된다. 둘째, 북한의 건배지는 년중 두 번째로 낮은 NDVI 수준을 보여주고 있다. 이것은 북한의 도시는 건축물의 밀도가 높고, 녹지의 비율이 낮기 때문이다. 원래에 65클러스터 중에는 대도시의 고밀도 도시화구역과 농촌마을의 저밀도 취락으로 양분되었지만 이 그래프는 병합시킨 결과를 보여주고 있다. 셋째, 북한의 논은 수면, 건배지역 보다 일별 NDVI가 높지만 발과 삼림에 비해서는 낮은 특성을 보여주고 있다. 특히 논과 발의 NDVI는 5월과 6월에 가장 큰 차이를 보이고 있다. 이것은 야얼대 월간의 바람 순환에서 파종하여 모기를 끌어, 6월 중에 모내기를 하기 때문에 다른 시기에 비해서 논과 발의 논의 NDVI가 차이가 가장 큰 것을 보여주고 있다. 반면에 7, 8, 9월 중에는 논과 발의 NDVI는 0.75~0.78의 유사한 수준을 유지하고 있다. 북한은 가을의 급격한 기후 자세에 대비하여 10월 중에 추수를 시행하기 때문에 논과 발의 NDVI는 급격히 저하되고 있다. 넷째, 북한의 상록형엽, 낙엽형엽, 혼합형, 혼합림의 6~9월 중의 생육기에는 NDVI값이 거의 동등한 0.85 이상을 유지하며, 휴면기 및 개사기에는 그 차이가 절연 크다. 즉 휴면기 중의 NDVI 수준은 상록형엽수, 혼합림, 낙엽형엽수, 낙엽침엽수의 순으로 구분된다. 특히 휴면기 중의 낙엽침엽수의 NDVI가 낮은 것은 개마고원 등의 고지대에 위치하고, 적설지역의 비율이 낮기 때문으로 판단된다. 여기서 임상을 분류하는 것은 전술한 바와 같이 각 클러스터에 소속된 픽슬의 공간적 분포, 경사도, 표고 등을 전문가 지식을 활용하여 시행한다.

2. 영상분류 정확도 검사

전술한 바와 같이 SPOT위성영상의 육안관측 결과를 992개 픽셀의 기준자료로 사용하여 본 영상분류 정확도를 검사한 결과는 <표 6>에 제시하였다. 이 표의 상단은 분류호차를 검증하기 위해서 SPOT영상에서 확보한 기준자료를 보여주며, 좌측에는 영상분류결과를 보여 주고 있다. 따라서 표의 좌상 코너에서 우하 코너 방향의 대각선은 각 지표 유형별로 정확하게 분류된 픽셀의 수를 제시하고 있다. 이 영상분류정확도 검증표는 다음과 같이 요구할 수 있다. 첫째, 좌상단에 표시된 낙엽침엽수는 총 143개의 기준자료 중에서 133개가 정확하게 분류되어 분류정확도는 79.02%임을 알 수 있다. 둘째, 표의 6번째 열에 위치하는 무림목지는 기준자료 122개 중에서 99개가 무림목지로 분류되어 분류정확도는 81.82%이며, 무림목지 중에서 17개는 밝으로 잘못 분류되고, 낙엽침엽, 혼합림, 혼합림으로 잘못 분류된 픽셀도 각각 2개, 3개, 1개인 것을 보여주고 있다. 셋째, 논, 건배지, 수면, 상록침엽의 분류정확도는 95%를 초과하는 반면에 낙엽침엽, 낙엽침엽, 발, 무림목지는 분류정확도가 82% 수준에 미치는 것을 보여주고 있다. 셋째, 전체분류정확도는 85.58%이고, 범주형 자료의 분류정확도 검증에 사용.
되는 Kappa계수는 0.84로서 대단히 높은 것을 알 수 있다.

3. 북한의 지피분류 결과

북한의 지피분류 결과는 <그림 5>와 같으며, 다음과 같이 요약할 수 있다. 첫째, 북한의 농경지는 서해안에 접한 황해남도, 황해북도, 평안남도 및 평안북도에 주로 분포한다. 이 지역에서 논은 주로 해안선에 가까운 지역에 분포하고, 밭은 논과 산림의 중간지대에 분포하는 것을 알 수 있다. 함경남도 동해안 지역과 두만강 중류지역에도 밭이 분포하는 것을 볼 수 있다. 본 연구팀이 2008년 8월에 개성의 송악산을 방문하면서 길가에 식재된 옥수수밭을 관찰한 바에 의하면 토양질서가 심하여 포화도와 자갈이 표면에 노출되고, 옥수수의 기도 1.5m 에도 미달되며, 여름철 수확기가 가까운 시기에도 이식의 수가 적고, 그 크기도 적은 것을 볼 수 있었다. 평양에서 묘향산을 비스듬으로 왕복하면서도 급경사지에 다팔밭을 조성하고, 논의 구획정리가 미비하여 헐치의 크기가 적고, 모양도 부정형이어서 기계화 영농에 부적합한 비율이 높은 것을 볼 수 있었다. 결국 농경지의 단위면적당 생산능력이 낮고, 집단농장 구성원의 아토의욕이 부족한 점 등으로 인하여 식량부족을 자제적으로 해결하기 어려운 것으로 판단된다.

둘째, 상목침엽수림과 낙엽침엽수림은 남림산맥, 함경산맥, 마식령산맥을 경계로 하는 개마고원과 백두고원에 널리 분포하고 있다. 이 지역은 주로 표고가 1,000m를 초과하고, 겨울 기온도 우리나라에서 가장 낮은 아반대성 기후를 갖는 지역이다. 백두산의 용암이 흩어져 조성된 용암대지의 혼란한 지세로 인하여 여타 지역에 비해 산림이 비교적 잘 보존되고 있지만

<table>
<thead>
<tr>
<th>(표 6) 영상분류정확도 검증표</th>
</tr>
</thead>
<tbody>
<tr>
<td>낙엽활엽</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| 비율(%) | 79.02 | 74.05 | 94.95 | 84.62 | 81.82 | 80.12 | 100 | 100 | 95.65 |
근래에는 북한의 식량난 타개를 위한 농경지 확장사업으로 인해서 산림이 황폐화되고 있다. 이것은 아마존 강글의 농경지 전환으로 인한 삼림축소와 기후변화 촉진 및 다양한 생물다양성과 마찬가지로 우리나라의 이산화탄소 흡수능력 저하 및 화귀 야생동식물의 서식지를 파괴하는 부작용을 초래하고 있다.

셋째, 산림황폐화는 전국 도처에 분포하고, 특히 백두산에 근접한 양강도의 대흥단군과 산지면 일대에 집중적으로 분포하고 있다. 인구가 밀집하여 도시화구역 및 농경지가 넓게 분포하는 평안남도, 평안북도, 황해북도, 황해남도에는 농경지와 산림 접경 부분에 황폐화가 산재하고 있다. 이것은 산지에 조성된 비탈과 연료벌채에 의한 산림 피해를 반영하는 것으로 볼 수 있다. 남립산맥 중하부에도 황폐산지가 상당히 분포하는 것을 알 수 있다. 이 지역의 산지 황폐화는 2004년도 4월과 2009년도 10월의 MODIS 영상에서도 다수의 산불이 확인된 것과 일치하는 것이다. 근래에 발견된 산불지역은 북한의 농기계 부족으로 인하여 몇 년에 걸쳐서 인력으로 경지를 조성한 후에 농경지로 이용될 것이다. 그러나 금강산 지역의 개간산지는 토양침식, 특히 홍수시의 산사태로 인하여 토지생산성이 저하되면서 인접한 산지를 연쇄적으로 해손하는 악순환이 계속될 것이다.

본 연구의 북한 지표분류 결과는 <표 7>과 같다. 이 표에는 산림을 상목침입, 낙엽침입, 낙
<표 7> 북한의 지피분류 결과

<table>
<thead>
<tr>
<th>대분류</th>
<th>소분류</th>
<th>면적(km²)</th>
<th>비율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>산림</td>
<td>상록림</td>
<td>19,942</td>
<td>16.27</td>
</tr>
<tr>
<td></td>
<td>낙엽림</td>
<td>10,460</td>
<td>8.53</td>
</tr>
<tr>
<td></td>
<td>낙엽림</td>
<td>28,151</td>
<td>22.97</td>
</tr>
<tr>
<td></td>
<td>혼합림</td>
<td>17,784</td>
<td>14.51</td>
</tr>
<tr>
<td></td>
<td>무림목지</td>
<td>13,878</td>
<td>11.32</td>
</tr>
<tr>
<td></td>
<td>계지</td>
<td>32</td>
<td>0.03</td>
</tr>
<tr>
<td>농경지</td>
<td>논</td>
<td>12,302</td>
<td>10.04</td>
</tr>
<tr>
<td></td>
<td>발</td>
<td>17,667</td>
<td>14.41</td>
</tr>
<tr>
<td></td>
<td>전경지</td>
<td>1,115</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>수면</td>
<td>1,233</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>합 계</td>
<td>122,564</td>
<td>100.00</td>
</tr>
</tbody>
</table>

엽활엽, 혼효림으로 분류하고, 산림황폐지는 무림목지와 계지로 구분하고 있다. 이들 산림 유형은 산림과학원의 기준에 따라서 식량율이 50%를 초과하는 지역이다. 반면에 무림목지에는 식량율이 50%에 미달되는 지역을 충칭하는 것이다. 무림목지와 계지를 제외한 온폐된 산지의 면적은 76,337km²이며, 그 점유비율은 국토의 62.28%이다. 산림황폐지는 무림목지 13,878km²와 계지 32km²를 더하면 그 면적은 13,910km²로서 북한 국토의 11.35%를 점유한다.

4. 북한의 지피분류 변화 추세

본 연구결과와 종래의 북한 산림면적을 비교하면 변화추세는 다음과 같이 정리할 수 있다. 첫째, 교포의정보에 입각한 A/R CDM사업의 기준년도가 되는 1990년도의 북한의 산림과 비산림지역의 면적을 1989년도 AVHRR영상을 이용하여 분석한 결과 북한의 산림과 농경지 면적은 각각 95,044km²(77.63%), 농경지 25,342km²(20.71%)이었다. 본 연구의 2008년도 산림면적 76,337km²는 1989년의 북한산림 면적에 비해서 18,667km²나 감소된 것이다.

둘째, 본 연구결과와 북한의 1996년도의 공식 토지 이용자료를 비교하면 <그림 6>과 같다. 북한자료는 1997년도에 발표되었고, 이 자료는 UNEP(2003)에 계체되었다. 북한자료는 상록침엽, 낙엽침엽, 혼효림, 무림목지로 구분되었고, 모든 유형의 산림 면적이 축소되고, 무림목지의 면적이 증가된 것을 확인할 수 있다. 즉 2008년도의 북한산림면적 76,337km²는 UNEP(2003)에 제시된 1996년도의 북한의 공식 산림면적 81,830km²보다 5,493km² 적은 것이다. 북한의 토지법은 <표 1>에 제시한 바와 같이 산림이 울창한 보호구역, 혈명전자지, 군사용토지로 특수토지로 하여 산림토지와 구분하며, 본 연구의 산림면적은 이들 특수토지 중에서도 산림식생으로 폐복된 모든 토지를 산림면적에 포함시키고 있다. 북한의 특수토지에 대한 자료를 확보하면 실제 산림폐복 면적을 추출할 수 있고, 이 기간 12년 중의 산림면적
동적 탐사를 이용한 북한의 산림확장과 현황 조사

수조 추계도 알 수 있다. 현재로서는 1996년부터 2008년의 12년 중에 년평균 약 458km²의 산림면적가가 감소되고 있는 것으로 판단된다. 현재 북한에서 광산 등의 산업용토지 혹은 대규모 도시개발 사업이 많지 않은 것을 감안하면 이 기간 중에 산림은 주로 농경지로 전환된 것으로 판단된다. 북한의 농경지 면적은 1996년 공식 발표자료 (UNEP, 2003)에서 21,030km²로 발표되었다. 이것은 해방 이후에 김일성과 김정일 치하의 지속적인 농경지 확장정책의 결과이다. 그러나 실제는 북한은 1995년부터 2000년대 초반까지 거의 연쇄행사로 대농수와 산사태에 의한 농경지 유실 및 토사해를 피해를 받았다. 또한 2004년도와 2009년도 MODIS 위성영상에서 확인한 바와 같이 산불에 의한 농경지 확장사업이 지금도 계속되고 있다. 2008년도 영상 분류에 의한 농경지 면적은 논 12,302km², 발 17,667km²로서 합계 29,969km²이다. 이 농경지 면적은 2006년도 북한의 공식 발표자료에 비해서 8,939km² 큰 것이다. 이것은 북한에서 산지 개간과 해안매립에 의한 농경지 확장 추세를 보여주는 것이다.

셋째, 본 연구 결과는 이승호(1998)가 1997년의 Landsat TM영상을 이용한 결과인 84,460km²와 비교하면 8,123km²가 감소된 것이다. 또한 전술한 바와 같이 Landsat TM 영상은 산림황폐지와 초지를 정확하게 분류하기 곤란함을 이유로 제시하면서 초지면적 10,660km²에는 산림황폐지로 포함됨을 받고 있다. 그가 제시한 황폐지 690km²는 우리나라 임상도의 제지에 해당되는 것으로 판단된다. 북한과 같이 남한 지역의 Landsat TM영상을 확보하는 과정에서 구름이 상당 부분 포함된 영상을 사용하였기 때문에 전체 면적의 1.1%인 1,390km²를 기타로 분류하였다. MODIS 영상을 이용한 본 연구는 종전의 Landsat TM에 비해서 공간해상도는 낮은 편이지만 구름 제거 및 황폐지 유행 분류의 측면에서 양호한 결과를 얻을 수 있었다.

북한의 산림면적 감소 및 농경지 면적 증가 추세는 <그림 7>에서 볼 수 있다. 즉 북한의
산림면적은 1989년부터 감소하는 추세인 반면에 농경지 면적은 증가하는 추세를 확인할 수 있다. 이것은 북한 해방 이후의 지속적인 산지개간 및 농경지 확장 사업의 추진결과를 보여 주는 것이다.

5. 황폐산지의 유형구분

두각축분류에 의해서 추출된 65개 클러스터는 전문가 지식에 입각한 의사결정 기법 (Decision tree classifier)을 이용하여 그림 8과 같이 황폐산지로 병합, 명명되었다. 이들은 공통적으로 어름철 극성기의 NDVI수준이 다양임지에 비해 낮고, 농경지 보다 생육기간이 길기 때문에 황폐산지의 유형으로 분류된다. 각 클러스터의 병합 및 명명과정은 다음과 같이 요약할 수 있다. 첫째, 클러스터 16은 4-11월 중의 NDVI가 다른 클러스터에 비해서 현저히 낮다. 식물생육이 왕성한 7~9월의 NDVI도 0.62~0.64에 불과한 반면에 다른 지리의 NDVI는 이 기간 중에 0.75를 초과하기 때문에 쉽게 구분할 수 있다. 따라서 클러스터 16은 북한의 고산 금정사 지역에 존재하는 암반지대에 소밀도의 식생이 분포하는 것으로 판단되고, 이런 지역은 우리나라의 임상도 분류기준을 적용하면 제지로 분류된다. 둘째, 클러스터 30, 40, 53은 12월-2월의 식생 휴면기 중에 어린 지리 유형에 비해서 NDVI가 높은 반면에 암석지대로 분류된 클러스터보다는 NDVI가 현저히 높기 때문에 주로 고지대에 위치한 암석지대에 주변에 저밀도로 분포하는 점일수리므로 판단된다. 클러스터 53은 6월과 7월의 NDVI가 다른 유형에 비해서 현저히 낮은 수준을 유지하며, 이것은 기온이 특분 낮은 고지대, 북사면에 분포하는 무렵목지로 판단된다. 전문가 지식을 감안하면 이들은 북한의 고지대에 낮은 밀도로
분포하는 사스레나무, 이갈나무, 중비나무 무림목지로 판단된다. 섟체, 클러스터 43은 근절철
하면기의 NDVI가 가장 낮은 반면에 6월과 7월의 NDVI는 이 그룹 중에서 가장 높은 것을 보
여 주고 있다. 이것은 겨울의 적설량이 많고, 여름에는 번성하는 고산의 초지로 명명할 수 있
다. 넷째, 클러스터 28은 겨울 근면기의 NDVI값이 가장 낮고, 초지로 확인된 클러스터와 유
사한 생물계절 특성을 갖고 있다. 따라서 이와 같은 무림목지는 전산업한 암반, 지밀도 고산수
림대, 고산초지를 제외하면 산림بدل채지로 추정된다. 마지막으로 북한의 산림화폐지의 점유비
율은 개간산지(67%), 벌채지 (16%), 초지(11%), 고산림첩수림(6%)의 순으로 구성되고 있다.
북한의 황폐지역 분포는 행정구역 별로 상당한 차이가 있다. 북한의 광역자치단체는 9개도,
1개 특별시, 3개 직할시로 행정구역을 구분하고 있다. 북한의 9개도는 야강도, 자강도, 함경
북도, 함경남도, 평안북도, 평안남도, 황해북도, 황해남도, 강원도이며, 광역시는 개성, 남포,
평양, 나진선봉으로 구성된다. 본 연구에서 도출된 북한의 광역자치단체의 황폐산지 면적을
각 지자체별 비율로 환산한 결과는 <그림 9>와 같으며, 다음과 같이 요약할 수 있다. 첫째,
북한의 무림목지와 제지를 합한 13,910km²은 국토의 11.35%를 차지하여 남한이나 다른 국가
에 비해서 현저히 높은 것이다. 둘째, 개성, 황해남도, 평양의 황폐산지 비율은 20%를 초과하
여 높은 실정이다. 이들 지역은 지형이 비교적 완만하고, 인구밀집지역이어서 농경지 확장사
업 및 산림연료 채취로 인한 피해가 가장 큰 곳이다. 셋째, 함경북도, 나진선봉, 자강도, 함경
남도는 황폐산지의 비율이 10%에 미달되는 상대적으로 양호한 편이다. 전산한 바와 같이 근
래에 이들 인구밀도가 낮은 험준한 산악지역에도 산불을 이용한 화재가 증가되는 추세를 감
안하면 산림폐화는 지속될 것으로 예측된다.
Ⅴ. 결론

본 연구는 2008년도 월별 MODIS NDVI 영상을 이용하여 북한의 지피유형을 분류하고, 산림황폐지를 조사하고, 산림의 황폐화 추세를 조사하였다. 본 연구의 결과는 다음과 같이 요약할 수 있다. 첫째, MODIS NDVI 영상의 생물계절 특성에 입각하여 북한의 지피를 분류하였고, 특히 Landsat TM 등의 다중밴드 영상분류기법으로 곤란한 낙엽침엽 및 낙엽활엽수림을 성공적으로 분류하였다. 또한 공간해상력 250m인 MODIS 영상은 북한의 혈준한 산지에 산재하는 농경지와 산림황폐지 분류에 부적합한 것이라는 선입관념을 타파한 것이어서 의의가 크다. 본 연구의 분류결과들은 북한의 산림황폐화 추세의 심각성을 확인하고, 산림복구에 필요한 기초 자료 확보에 큰 기여를 할 것으로 판단된다.

둘째, 북한의 백두산에 인접한 개마고원과 백두고원의 광활한 이갈나무림을 파괴하고 갑자재배단지를 조성한 실패를 확인할 수 있었다. 북한의 산불발생은 MODIS 영상을 이용하여 2004년 4월에 피크를 이루었고, 일반적으로 소강상태를 유지하다가 2009년 10월에 다시 재발된 것을 확인할 수 있었다. 본 연구에서는 이 지역에 대규모 산림파괴 및 농경지 개간 실패를 확인할 수 있었다. 남측의 관광객이 2008년 여름에 산지면 공원을 경유하여 백두산 관광을 다니는 과정에서 도로변에 분포된 대규모 농경지 개간사업을 관찰한 것을 종합하면 이 고인지대에는 대규모 농경지 개간사업을 추진한 산림파괴가 지속되고 있는 것을 확인하는 것이다. 이와 같은 산림파괴는 대규모 토양유실을 유발할 수 있고, 비옥토
가 유효되면 인접한 산림의 파괴를 유발하는 악순환이 우려된다. 개마고원 일대의 생물다양성 보전을 위한 산림보전 및 복원 필요성이 시급하다.

셋째, 북한의 인구가 밀집된 평안도와 황해도 지역 도시 및 취락 주변의 산림의 대부분은 광범위하게 황폐화된 것을 확인할 수 있었다. 북한은 해방 이후에 김일성-김정일 교시에 의거하여 도시 및 취락 인근 지역의 농경지 확장정책을 지속적으로 추진하였다. 근래에는 난방 및 취사용 연료 부족으로 인하여 산림벌채가 급증한 것도 산사태, 평탄지 농경지의 유실 및 토사퇴적을 가속화 시켜서 북한의 농업생산기반을 급속하게 훼손시키고 있다. 잘못된 산지개 발정책이 비약한 농경지까지 파괴하는 부작용을 방지하기 위해서는 남한에서 1960년대와 1970년대에 시행한 바와 같은 대규모 사방사업 및 조림사업에 의한 토사유출 방지, 수자원 함양 효과를 증대시키는 노력이 필요하다.

넷째, 북한의 산림복구 우선순위는 무림복지와 개간산지를 중심으로 시행하는 것이 필요하다. 북한의 무림복지 면적 13,878km²는 국토의 11.32%를 점유하고 있다. 또한 경糇가지에 분포하는 농경지를 산림으로 복구하는 것이 필요하다. 경糇가지의 정책을 경사도 12°를 기준으로 할 경우에 년 676km²와 백 6,092km²는 산림복구 대상지가 된다. 현재 석량부족 문제가 극심한 현실을 감안한다면 산림복구를 동원하는 주민에게는 석량을 노임으로 지급하는 것이 필요하다. 대규모 산림복구 작업에는 대략한 자금이 소요되는 것을 감안하면 남한의 민간단체 혹은 정부기관의 참여가 필수적이다. 따라서 우선 복구지역은 공항, 항구, 개성공단, 금강산 인접지역과 같이 남한의 접근성이 양호하여야 하고, 북한의 도시 및 취락에 근접하여 대규모 사업에 필요한 노동력 동원이 용이하여야 하며, 산사태 예방, 수자원 확보, 연료림 조성 등의 산림복구 효과를 극대화시킬 수 있는 지역을 선정하여야 한다.

사사

이 연구는 과학기술부 남북과학기술교류협력사업 및 대림대학 선진사회 연구원의 연구비 지원에 의해서 수행되었습니다.(선진사회연구원 2007-7)

참고문헌

공우석, 2006, 북한의 산림생태계, 서울: 김문당.
박중화, 2005, 생물계절 특성을 이용한 북한지역의 자연환경실태조사. 한국항공우주연구원 연구보고서.

http://modis.gsfc.nasa.gov/
http://cdm.unfccc.int/Projects/pac/pac_ar.html