AUGMENTED CATEGORIAL GRAMMAR
WITH ITS COMPUTATIONAL IMPLEMENTATION*

Kiyong Lee, Suson Yoo
Key-Sun Choi, Sangki Han

A grammatical system called Augmented Categorial Grammar (ACG) is
proposed to construct a computationally tractable categorial grammar that can
adequately treat some syntactic and semantic problems involving grammatical
relations, serhantic roles, control, and unbounded dependency in English and to use
it in our subsequent work as a basic framework for developing situation semantics
for natural languages. ACG is claimed to be a monostratal context-free grammar
compatible with some current versions of phrase structure grammars. An imple-
mentation for a parsing system is presented to test the computational tractability
of ACG. Its program is written in Prolog.

1. Introduction

The purpose of this paper is to construct a computationally tractable
categorial grammar that can adequately treat some syntactic and semantic
problems involving grammatical relations, semantic roles, control, and un-
bounded dependency in English and to use it in our subsequent work as a basic
framework for developing situation semantics for natural languages. This
grammar is claimed to be a monostratal context-free grammar compatible
with, if not preferable to, some current versions of phrase structure grammars.
At this stage, however, we are more interested in explicitly formulating some
basic notions of our grammatical system called ACG than in fully testing its
descriptive adequacy or providing various supporting arguments.

The present paper consists of two main sections : In section 2, we establish
ACG by defining the notions of category, subcategory, matching, and general-
ized functional application and then, in section 3, implement the entire system
in a programming language Prolog (Clocksin & Mellish 1985 ; Pereira &
Warren 1980) to test its computational tractability.

2. Augmented Categorial Grammar

ACG, augmented categorial grammar, is a version of categorial grammar
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based on the notion of funclor and various other notions prevalent in
unification-based grammars, especially HPSG (Pollard 1985 ; Sag & Pollard in
preparation). Related to the notion of functor is the generalized notion of
functional application that plays a unique role in syntactic operations. Unlike
some of its predecessors in Montague grammar, ACG admits no transfor-
mational operations as such but only those computationally tractable opera-
tions that may be subsumed under the operation of generalized functional
application.

ACG differs from classical Montague semantics in two respects. First, it is
information-based. It attempts to go beyond a simple discussion of truth
conditions but to make serious inquiries into what kind of information is
conveyed by statements or questions and under what condition it is conveyed.
Secondly, it attempts to interpret anaphora, scope ambiguity, and other related
problems within a framework of discourse understanding. ACG, in short,
adopts a situation-theoretic approach to the representation of semantic infor-
mation. However, in this paper, we say very little of these aspects of ACG.

2.1. Syntactic Categories

ACG admits three types of categories: basic, functor, and storage cate-
gories. '

(1) Categories

a. Basic categories :
A (finite) set of feature-value pairs is a category.

b. Functor categories :
If C is a sequence of categories C; and B is a category, then (C,B) is
a category.

c. Storage categories :
If C is a sequence of categories (C,,--,C,) and B is a category and,
furthermore, if C; is a j-th category in C such that its INDEX feature
is defined, then (C{j}, B) is a category,
where C{j}=(C,,"+,Ci-1,{C;}, Cysr,o+,Ca).

Unlike GPSG or HPSG, no syntactic feature in ACG is category-valued.
ACG admits only a finite number of atom-valued features. Hence, the set of
basic categories is finite. From this finite list, we treat features N, V, and
MAX as primary features and use them to define some basic categories each
of which usually serves as argument to a functor category. Here we introduce
the most commonly used four basic categories, S, NP, N, and PP, whose
feature-value pairs are specified as below :

(2
a. S={(N9_)1 (Vy+)1 (MAX1+)}
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b- NP:{(N1+)) (V"—)) (MAX!+)}
c. N={(N,+), (V,-), MAX,-)}
d. PPZ{(N,_)’ (Vy_)) (MAX,“‘)}

Categories NP and N have the same values for the features N and V, but
differ from each other with respect to the feature MAX. Although ACG,
strictly speaking, does not follow any kind of X-bar theory, it distinguishes
maximal phrases (S, NP, and PP) from non-maximal ones (N). On the other
hand, N(woman) and N’ (fat woman) are not distinguished from each other, for
they are both non-maximal categories. Note that this notion of maximality is
different from that of saturation discussed in Pollard (1986). Since they do not
need any complements, maximal categories S and NP are saturated. On the
other hand, expressions of the non-maximal category N can either be saturat-
ed or non-saturated, depending upon whether or not they need complements.

Verbal expressions belong to a functor category, V or VP. The transitive
verb, say love, belongs to a V category defined as (NP, VP), while VP is
defined as (NP,S). In Montague semantics, these categories should be interpret-
ed as functions which take NP-denotations as argument.

We also have functor categories like ((PP,NP),VP) or (VP,NP),VP) that are
interpreted as functions each taking a pair of arguments. The verb put, for
instance, belongs to the former, while the verb persuade belongs to the latter
type. Unlike classical categorial grammar, our augmented CG admits unorder-
ed local trees with branches more than two.! Both of the above categories
admit local trees with three branches:

3 a. VP b. \% 3

((PP, NP), VP) NP PP ((VP, NP), VP) NP VP

In general, both the categories (A,(B,C)) and ((A,B),C) are well-defined functor
categories in ACG, if (B,C) and (A,B) are well-defined. They, however, result in
two different tree structures.

@) a. C b.
B,C) B 7\
A (B,O) A ((A,B),C) A B

! Order is introduced into trees as a separate list of statements on linear precdence among
sister nodes as in GPSG.
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In (4a), A is not a daughter of C, but of (B,C). B is C’s daughter, but A is its
granddaughter. On the other hand, in (4b), both A and B are C’s daughters.

As in HPSG, INDEX is introduced into ACG as a syntactic feature whose
values range over parameters or natural numbers. It will be shown that the
specification of INDEX makes it possible to interrelate SYNTAX with
SEMANTICS. In general, a category is indexed if it has a semantic role. Since
INDEX is a non-primary feature, its specification subcategorizes categories.
An indexed NP[<INDEX,1>], for instance, is a subcategory of NP with an
additional feature specification.?

Given a functor category, ACG can create a storage and put a category in
it if the category is indexed with a parameter or a natural number. A stored
category is enclosed by curly brackets. It may contrast with the SLASH
feature in GPSG or HPSG, playing the key role in accounting for unbounded
dependency in WH-questions, relativization or topicalization in English. For
example, given a category (5a), we may create a storage in it as in (5b):

(5)
a. (PP,NP), (NP, 5))
b. (PP,{NP}),(NP,S))

The verb put may belong to these categories. In the former case, it takes two
complements PP and NP to yield (NP,S), that is, VP. In the latter case, it takes
only one complement PP to form an expression of category VP with a missing
NP in an object position.

2.2. Lexicon

Each entry in the lexicon contains the fullest possible amount of information
concerning the syntactic, semantic, and phonological properties of a basic
linguistic sign or a lexical item. This sign is represented in a matrix form
divided into three components, syntax, semantics, and phonology -

(1)
SYNTAX=CATEGORY

SEMANTICS=In SITUATION
PHONOLOGY =SPELLING

The syntactic component of each matrix specifies the syntactic category
which the lexical item belongs to, the semantic component gives partial
description of a situation or a situation type in which the object denoted by the

? We shall separate the representation of primary feature specifications from that of
non-primary ones by the use of square brackets: The primary specifications are represented
to the left of the brackets, while the non-primary ones are enclosed by the brackets.
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lexical item plays its role, and the phonological component gives information
concerning how the word is pronounced. But as to the phonological component,
we have little to say and so will simply give spellings.

As a very simple example, consider how a proper name like Paul is re-
presented in the lexicon.

2)
SYNTAX=CATEGORY =NP[KINDEX, x>, <AGR,s3>, C(GENDER,
mascy)

SEMANTICS=in SIT: <<of-IND,x;1>>

«=x,PAUL;1>»>

or simply <<IND.x=PAUL;1>»>

where IND is the type of individuals

PHONOLOGY =Paul ‘

This matrix is interpreted as giving information about the lexical item Paul/
that it is a 3rd person singular masculine NP, denotes an individual x who is
Paul, and is spelled ‘Paul’.?

In actual practice, we try to simplify our representations. First, taking into
consideration that each lexical sign consists of the syntactic, semantic, and
phonological components, we can omit these labels from each matrix. We can
also omit the label ‘CATEGORY’, since the first row in each matrix represents
a syntactic category. Some syntactic features like INDEX, AGR, CASE, and
GENDER need not be represented, for these features are uniquely predictable
on the basis of their associated values. The label ‘in SIT’ can also be deleted,
for each SEMANTICS is partial description of a situation or a situation type
SIT. With these simplifications. the above matrix may be represented as:

3
NP[x,3,masc)
{(IND.x=PAUL:1>»
Paul

Note here that the value x of INDEX interrelates SYNTAX and SEMAN-
TICS, thus giving the information that the lexical item Paul is a 3rd person
singular masculine NP denoting an individual PAUL.

A pronoun like she is associated with a matrix like:

" (4) NP[x,s3,nom,fem]
FEMALE, IND.x;1>>

3 We use <R, IND.x;1>> as an abbreviatory description of two consistent states of
affairs, <<of-IND,x;1»> (x is of the type INDividual) and <(R,x;1>>,
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«=,x,IND.Ax);1>>
where IND.d(x) is some individual b assigned to the parameter x by
the discourse function d.

she

This matrix shall be interpreted as giving information about the word ske that
it is a 3rd person singular nominative feminine NP denoting a female individ-
ual x whose reference is determined in a discourse situation d. Here we assume
that there is a well-defined discourse related function that assigns individuals
to parameters.

Now we introduce two indefinite and definite articles or singular deter-
miners @, an and the :

(5)
(N.NP[x])
«EXIST,x;1>
an /before a vowel ;
a /otherwise

(6)
(N,NP[x])
UNIQUEx;1>>
the

Here the articles are treated as functors from N to NP associated with an
unsaturated state of affairs in which an object x exists. Furthermore, in the
case of the definite article this x should be a unique object. Note here that the
semantic type of an object x is not specified. It can either be an individual, a
property or anything else.

A common noun like kitfer is a non-maximal N category denoting a property
of individuals. This information is provided by the following matrix :

(n
N[x]
KITTEN, IND.x;1>»
kitten

Here again the index specification x interrelates SYNTAX with SEMAN-

TICS, giving the information that the linguistic sign kiften of a syntactic

category N denotes the property KITTEN of a certain individual object x.
An adjective like female has the following representation :
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(8
(N,N[x])
FEMALE,IND.x;1»
female

This lexical item belongs to the functor category (N,N[x]) and denotes the
property FEMALE of an individual x.

We now treat verbs like is, loves, got. The copula is here is treated an
expression of the functor category as represented below :

9
(NP[y,s3],(NP[x,s3], S[fin]))
Kx=y;1»
is

Here the copular verb is interpreted as denoting an identity relation between
two parameters x and y.
The transitive verb loves is represented as below :

{10
(NP[2,acc], (NP[1,s3,nom], S{fin]))
(LOVE, IND.1,IND.2;1>>
loves

This verb takes an accusative NP to form a VP and then a nominative NP to
form a finite S. It is interpreted as describing a state of affairs in which two
individuals have a LOVE relation, each playing a role either as a lover(l) or as
a one who is loved.

Finally, the verb gof may have a PP complement as shown below :*

an
((PP[from,2], NP[2]), (NP{1], S[fin]))
<KGET,IND.1LIND.2;1>>
<(FROM,IND.2,x;1>>
got

Note here that PP[from,x] has the following tree structure :

* Here we ignored the specification of temporal location expressed by the past tense
form of the verb got.
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12 PP[from, x]
<FROM, x, IND.5; 1>

(NP[5], PP[from, x]) NP [y]
<FROM, x, T.5; 1> <of-IND y: 1>

from

The preposition from is of the functor category taking an NP object to form
a PP. It is interpreted as describing a relation of FROM between some object
x and another object with index 5 whose type T is unspecified. This T is
anchored to IND when the preposition combines with an NP which is interpret-
ed as denoting an object of the IND type. ,

An interrogative pronoun who is an NP with a feature specification que
(stion).

13
NP[x, nom,person,que]
{{WHO,IND.x;1>>
who

This interrogative pronoun is interpreted as describing a state of affairs in
which an individual x has the property WHO. On the other hand, a relative
pronoun who has a feature specification rel(ative).

{19
(({NP[x,nom,person,rel]}, S), (NP[x], NP[y]))
Lx=x;1»
who

Relative pronouns are not of a basic category NP, but of a functor category
with a storage. They combine with an S expression which lacks an NP to form
relative clauses. Note that relative clauses are treated here as belonging to the
category (NP[x], NP[y]) which we think better reflect their syntactic prop-
erties. Note also that relative pronouns are interpreted as describing a fact
which always holds and thus add nothing to SEMANTICS.

2.3. Syntax: Generalized Functional Application

In this section we attempt to generalize the notion of functional application
which is a basic syntactic operation of categorial grammar. Functional appli-
cation (FA) is an operation of matching and cancellation as illustrated below :



AUGMENTED CATEGORIAL GRAMMAR 423

(A,B) A

The left element A of the functor category (A,B) maiches with its argument
category A and is thus cancelled to yield a category B. The following is a
typical example :

@ S|fin]
NP[1, s3, nom] (NP[1, s3, nom], S[fin])

(NP[2, acc], (NP[1, s3, nom], S[fin])) NP[2, acc]
Paul loves Pommy

In this derivation, the matching condition which we assume to be the identity
of two categories, the leftmost category in a functor and its corresponding
argument category, is met by anchoring the index parameters of NP Pommy
and NP Paul to 2 and 1, respectively, and also assigning them case values ace
and nom, respectively. The anchoring of index parameters here is forced by
the basic matching frame provided by the functor category of the verb loves.

The operation illustrated by (2) looks straightforward, but not so simple as
we expect to be as we examine its matching conditions. Suppose we try to
analyze the following sentence :

(3) Who lox}es her?

In the lexicon, each of the words in (3) should have its category specified as
below :

{4) a. who: NP[x,nom,sS,person,due]
b. loves : (NP[2,acc], (NP[1,nom], S[fin]))
c. her : NP[x,acc,s3,person,fem]

Note here that the functor category of the verb loves will force the index
parameters x of its argument NP’s who and her to be anchored to the index
values 1 and 2, respectively. But then we find extra feature specifications like
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person, que, or fem in these NP’s, Their presence fails to satisfy the identity
condition of matching. If we adhere to this strict version of matching, we
cannot apply functional application (FA) to derive sentences like (3) on the
basis of (4b).

In order to deal with this problem, ACG introduces the notion of generalized
functional application by defining a set of conditions on forcing, matching and
cancellation. We first define the condition of forcing :

(5) Forcing
Given two categories of the form (A,B) and A’, where A and A’ are
identical except that A’ is underspecified with respect to non-primary
features, the functor category (A,B) forces its argument category A’ to be
identical with A either by anchoring parameters or adding further feature
specifications.

In getting the tree (2), we have already forced the parameter of each argument
NP to be set to the value either 1 or 2. By forcing, on the basis of (4b), we can
also anchor the index parameter of (4c) as in ©):

(6) her : NP[2,acc,s3,person,fem]

But even by this type of forcing we find the category of NP her in (5) not
exactly the same as, but more feature-specified than, the category NP[2,acc]
in (4b). So we have a problem.

Mutual forcing might be a conceivable solution to this problem, but we do
not follow this course. Instead we relax the identity condition of matching by
introducing an auxiliary notion of subcategory.

(7) Subcategory
Given two categories A and A’ which are identical with respect to primary
feature specifications, A’ is a subcategory of A if A is a subset A’

According to this definition, the category (6), namely NP [2,ace,s3,person,fem]
is a subcategory of the category NP[2,acc]. In general, subcategories are
more feature-specified than their corresponding categories. But it should be
noted that a subcategory relation is not a superset relation because it presup-
poses the identity of values in the two related categories with respect to their
primary features, N, V, and MAX.

We can now define matching to be a subcategory relation.

(8) Category Matching
Category A matches with category A’, if A’ is a subcategory of A.
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Note here that matching unlike identity isno longer asy metric relation.
We take the leftmost category A of a functor categor, (A,B) to match
with its candidate argument category A’, but not vice versa.

Using this definition, we can then generalize the notion of functional
application as below :

(9) Generalized Functional Application (tentative)
GFA((A,B),A’)=B iff A matches with A’.

This then admits a tree like the following :

S [fin]
10

NP[1, nom, person, que] (NP [1,nom], S [fin])

(NP[2, acc],(NP[1,nom], S [fin])) NP [2 ¢, s3, person, fem]

who loves her
GFA has applied here twice, each time satisfying the matching condition newly
defined.
But since ACG admits multi-branch trees, the matching condition as for-
mulated in (8) need be extended to include cases where one sequence of
categories may match with another sequence.

(1) Sequential Matching
Given two sequences of categories of the same length n,
Z=(C,,-,Co) and Z’=(C,+++,C),
Z matches with Z’ if every category C, in Z matches with a unique
category C'; in Z’. :

This then admits a tree like the following :

@ (NP[1,nom], S)

((PP[in], NP[2,acc], (NP[1,nom], S)) NP[2,acc,s3, impers] PP[in]

put it in the box



426 KrvonG LEE, Suson Yoo, KEy.-Sun CHol, AND Sanckr Han

Here the category sequence (PP[in], NP[2,acc]) matches its argument
sequence (PP[in], NP[2,acc,s3,impers]), for each category in the second
sequence is a subcategory of its corresponding category in the first sequence.
Note in particular that NP[2,acc,s3,impers] is a subcategory of NP[2,acc],
Note also that the precedence relation among complements as represented in
trees, say (12), does not necessarily follow the order of their occurrences in the
argument sequence Z’.

The matching condition (10), however, is still too restricted to account for
cases involving storages. Suppose we try to analyze a WH-question like :

(19 Whom does Paul love?

We should have at least the following syntactic information stored in the
lexicon :

(14 a. whom : NP[x,acc,person,que]
b. does: (S[bse], S[fin,que])
c. Paul: NP[x,s3,masc]
d. love : ({NP{2,acc]}, (NP[1,nom], S[bse]))

But GFA as currently formulated fails to combine Paul with love and to admit
a tree like:

15 ({NP [2, acc]}, S [bse])

NP [1,nom] ({NP [2, acc]}, (NP [1,nom], S [bse]))

Paul love

This tree is admissible only if GFA ignores stored categories in matching. It
should also let any stored uncancelled categories passed up to the mother
category. Before we reformulate GFA, we will further extend the notion of
matching.

(19 Extended Matching
A. Category Matching
Let C and C be categories, and {C} be a category C in storage. Then,
[i] C matches with C if C' is a subcategory is C.
[ii] {C} also matches with C’ if C matches with C’.
B. Sequential Matching
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Let Z and Z’ be sequences of categories of the length n, such as
Z=(C,,--,Cy) and Z’=(C;,*+-,C’n).
[i] Z matches with Z’ if every category C; in Z matches with a unique
category C; in Z'. ‘
Furthermore, let Z,* =(C,,---,C;,{Ci* },Cis1,-,Cp), and Z’ 5+ =(C'y,--,
C’b{C’J* }:C’.H»ly"'ycn)-
Then :
[ii] Z,;* matches with Z’ if Z matches with Z’.
[iii] Z matches with Z',,+ if Z matches with Z’.

Here the definition of categorial matching given in (8) is extended to cover a
case in which a stored category in a functor matches with its argument
category and is thus cancelled. This, for instance, will be needed in dealing
with topicalization. ’

an S [fin]

NP  ({NP[2]},S [fin])

Potatoes Mary loves

The definition of Sequential Matching is also revised to accommodate cases’
involving sequences containing a stored category. This is needed to account for
cases like:

it ((NP [2]}, (NP [1],S))

((PP [into], (NP [2]}), (NP [1],S)) PP [into]

put into the box

Matching B[ ii,iii] simply says: “Ignore the occurrence of a stored category
in matching.” ,

Notice in (18) that the category PP[into] occurring in the sequence (PP
[into], {NP[2]}) matches with the argument category PP[into] and is then
cancelled but that the stored category {NP[2]} has no match and is left
uncancelled. In general, we call such an uncancelled category a remnant. In B
[ii,iii], stored categories {C,* } and {C’;+ } are prospective remnants.

On the basis of the above notion of extended matching, we now show how
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GFA operates to cancel out certain elements in a functor category.

{19 Generalized Functional Application
Let Z and Z’ be any nonnull sequences of categories. And suppose Z
matches with Z'. Then we have :
[i] GFA(ZW),Z)=W’
(i ] GFA(({C}, (Z,W)),Z)=({C},W’)
where C is a category in storage and W’ =(R,W) if a remnant R results
from Z’s matching with Z’.

In GFA [ii], the occurrence of a stored category {C} is ignored in the
operation of GFA.

For illustration, consider the category sequences in (14). As shown in (15),
GFA[ii] applies to (14c) and (14d) where we have :

@0 a. {C}={NP[2,acc]}
b. Z=NP[1,nom]
c. W=S[bse]
d. Z=NP[1,nom,s3,mas]

As a result, we obtain :

@
({C}, W)=({NP[2,acc]}, S[bse])
where there is no remnant from matching and thus W =W

Next, GFA[i] can combine this result with an auxiliary verb does, admitting
the following tree:

@) ({NP [2, acc]}, S [fin, que])

(S [bse], S [fin, que]) ({NP [2,acc]}, S [bse])

does Paul love

Here, the category of does is treated as a functor taking the category of Paul
loves as argument so that when GFA applies to them we have:

@9 a. Z=S[bse]
b. W=S[fin,que]
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c. Z’=({NP[2,acc]}, S[bse])
d. R={NP[2,acc]}
e. W=({NP[2,acc]}, S{fin,que])

Finally, we obtain:

@0 S [fin, que]
NP[x,acc,person,que] ({NP[2,acc]}, S[fin,que])

whom does Paul love

Here the stored category {NP[2,acc]} matches with the category NP[x, acc,
person,que] of whom and thus is cancelled.

2.4. Syntax: Ordered Trees

Each GFA admits only an unordered local tree. This is a tree with a single
mother immediately dominating daughter categories which are not linearly
ordered to each other. Order is, however, introduced into each tree by observ-
ing the following linear precedence (LP) statements:

(1) LP Statements
[ i ] Functors precede their arguments.
[ii] But a functor of the category (A,S) is preceded by its argument
category A unless S is marked with [inv(erted)].
[iii] Storage-fillers precede their corresponding storage categories.
[iv] Among sisters, we have: NP<PP<VP

We claim that the word order is language-particular. The above LP state-
ments simply describe the phenomena of word order in English. Statement [ i ]
makes a verb precede its complements and a determiner, its nominal expres-
sion, Statement [ii ] allows the subject NP to precede its VP except for an
inverted construction. Statement [iii] places' WH-words, topic words, and
relative clause antecedents at the beginning of clauses. Finally, statement [iv]
fixes the order of verbal complements. We do not think that the above list is
exhaustive. Stylistic variation plays an important role in ordering constituents
of a sentence, ‘

2.5. Lexicon: Agreement
Agreement in English is not a uniform phenomenon in English. The Subject
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NP, for instance, agrees with its verb in number and person only. Determiners
agree with thier nouns in number. In the case of a copular verb, the subject and
the complement NP also agree in number. Object pronouns and WH-words
agree with, or are governed by, their verbs with respect to case only. In order
to account for such diverse phenomena in agreement, ACG simply adds a list
of some pertinent agreement statements to the lexicon and builds appropriate
pieces of information into some functor expressions in the lexicon,

Consider, first, the agreement between a verb and its subject as illustrated
below :

(1)
a. A cat meows.
b. *Cats meows.
c. *A cat meow.

(1a) is well-formed because the verb form of meows agrees with its Subject NP
a cat in number and person, while (lb,c) are ill-formed because there is no such
agreement there. To deal with this kind of agreement, we introduce the
following principle into the lexicon:

(2) Subject-Verb Agreement
Given a functor category (NP,S),
(NP[<number#>, <person,%>], S[<number,#>, <person,%>])

This statement simply says that NP and S in a functor category (NP,S) must
agree in number and person. This then requires a verb like meows to belong to
the category (NP[s3],S[s3,fin]). On the basis of such a lexical representation,
GFA admits the following tree:

@)
S{s3,fin]

NP [s3] (NP s3], S [s3, fin])

VAN

a cat meows

Note that Subj-V Agreement is not restricted to cases involving finite verbs
only. It also applies to nonfinite verbs, thus allowing the category of nonfinite
meow to be (NP[s31, S[s3,bse]). Suppose, furthermore, the auxiliary verb does
belongs to the category (S{s3,bse], S[s3,fin]), Then by GFA we may obtain
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the following tree :®

4)
S [s3, fin]

S [s3, bse]

(S [s3, bse], S [s3, fin]) NP [s3] (NP [3s],S [s3, bse])

|

does a cat meow

Next, we have a statement about the agreement in number between a
determiner, an adjective, or any other adnominal expression and a nominal
expression,

(5) Adnom-N Agreement
Given a category ([+N,—V], [+N,=VD,
we have: (+N,—-V, <number,#>], [ +N,—V <(number,#>])°

This admits the following trees:

6)

a.

NP [S] ' NP [pl]
(N [s],N[s]) N [s] (NP [pl], NP [pl]) NP [pl]
(N[s],NP[s]) N[s] (N [pl], NP [pl]) N[pl]
a fenLe kitlten all tllle kitlcens

* The inflectional form of a verb varies only when it is finite. Hence, no inflectional
change occurs in nonfinite verbs even if they have agreement feature specifications.

¢ Both N and NP belong to the category [+N,—V], Note also that there is no
distinction between N and N’, or Nom, in our ACG, for they both have the same feature
specification {-max}.
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Note that our Adnom-N Agreement does more work than merely passing the
number specification s or pl from the head N to the top node NP. The HFC in

GPSG alone cannot account for this type of agreement. While Adnom-N
Agreement blocks the following combinations, HFC alone cannot.

(7) a. *many kitten
b. *all (the) kitten’

Thirdly, in the case of copular verbs be, become, there is an agreement in
number between the Subject and an NP complement. This again is captured by
the following statement on agreement :

(8) Copular Agreement

If a copular verb belongs to a functor category (NP[<number,#>], (NP
[<number.#>], S)), then #=#.

This statement, along with the statement on Subj-V agreement, will categorize
the copula #s as follows :

(9) is: (NP[s], (NP[s3], S{s3,fin]))

Hence, we will have the following tree:

©  g[e3, fin]

NP [s3] (NP[s3], S [s3, fin])

(NP [s], (NP [s3],S [s3, fin])) NP [s]

it is a kitten

Finally, pronouns are subcategorized with respect to gender, number, person,
and case, and WH-words, with respect to case (and animacy). Hence, this
information must be contained in the lexicon. We will, for instance, have :

7 We do not know how to account for a well-formed expression like many a kitten at this
stage.
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(1) a. she: NP[s3,fem,nom]
b. her : NP[s3,fem,acc]
c. her: (N[#], NP[#])

(19 a. who: NP[nom]
b. who, whom : NP{acc]
c. whose: (N[#], NP[#])

Let us here be just concerned with case forms. Note first that the genitive
forms her and whose are not treated as NP’s, but of a functor category. So, in
ACG, we have only two values for the feature case: nom and ace. Further-
more, if we take aec to be the default value for case, then we have to mark the
value nom only.

Consider now how, when it combines with an NP, a verb selects an appropri-
ate case form.

9 a. She meows.
b. *Her meows.

(14 a. Paul loves her.
b. *Paul loves she.

15 a. Does she meow?
b. *Does her meow?

From this set of data, we simply note that Subject NP’s are nominative case
marked. Note in particular that this case marking is independent of the tense
feature of verbs, for in (15) the Subject of a nonfinite, or base form, verb meow
is assigned the nominative case. Assuming again that the default value of the
feature case is ace, we introduce the following case restrictions into the
lexicon :

(1§ Case Assignment
[1] The default value of CASE is accusative.
[2] Given a category (NP,S), the value of the feature CASE for NP is
nominative.

We may thus obtain the following tree:
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an S [s3, fin]

(S [s3, bsel, S {83, fin]) S [s3, bse]

NP/[s3, fem, nom] (NP [s3,nom], S [s3, nom])

I \

does she meow

Since the lexical item meow is of the category (NP,S), the CASE value of NP
must be nom. Furthermore, NP and S here must agree in number and person.
To be combined with she of the category NP[s3], their values must be s3.
We thus obtain (17).

Consider now the following sentence :

(19 Who likes to meow?

To analyze this sentence, we should obtain the following information from the
lexicon :

(19 a. who : NP[s3,nom,que]
b. likes: (VP[to], (NP[s3,nom], S[s3,fin]))
c. to: (VP[bse], VP[to])
d. meow : VP[bse]

Note here that VP[bse] is an abbreviation of the category (NP[nom,#,%1,S
[#,%,bse]) and VP[to], that of (NP[nom, #,%1, S[#,%,to]). The CASE value
nom is assigned to each NP occurring in the category (NP,S) by the statement
on Case Assignment. But since this functor is not combined with an NP in
deriving sentence (18), this NP does not show up in the tree nor does it show
any CASE assignment effect.

Consider then the following sentence in which the NP her is treated as the
Subject of the complement VP fo meow.

@0 a. Paul expects her to meow.
b. *Paul expects she to meow.

But in ACG this NP is the Object of the verb expects as shown in the following
analysis tree:
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@) S [s3, fin]
NP [s3,nom] (NP [s3, nom], S [s3, fin])

((VP [to], NP), NP [s3, nom], NP VP [to]
S [s3, fin]) \

Paul expects her to meow

Here, the NP her is treated as one of the two complements of the verb expecis.
But we will see later that %er is interpreted as the “logical Subject” of the verb
meow by a rule on control. '

Finally, consider a case involving long-distance dependency :

@2 a. Who do you think meows?
b. *Whom do you think meows?

The variation in (22) can also be accounted for just seeing how the lexicon
works. The lexicon as restricted by our statements on agreement will have the
following feature specifications :

@9 a. do: (S{bse], S{fin])
b. you: NP[<KNUMBER,#, (PERSON,2>]
c. think : (S[fin], (NP[1,#,%,nom], S[#, %,bse]))
d. meows : (NP[1’,s3,nom], S[s3,fin])
On the basis of (23d), we can obtain a storage category :

(@4 meows: ({NP[1’,s3,nom]}, S[s3,fin])

This then admits the following tree:
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@

S [fin]

NP [1’, 83, nom, que] ({NP {1’,s3,nom]}, S [fin])

(S [bse], S [fin]) ({NP[I’,s3,nom]},S [# 2, bse])

NP [1, #2] ({NP[?,s3,nom]}, (NP [1, 4, %], S [bse, # %))

(S [fin], (NP {1, #, %1,S [bse, #,%]) ((NP [I’,s3,nom]}, S [s3, fin])

who do you think mMeows

At the lexical level, the stored category is assigned s3,nom for its features
NUMBER, PERSON, and CASE. This then is carried out to the higher nodes
till the storage is filled by the question word who which has the same values
for its features NUMBER, PERSON, and CASE.

As is illustrated, various agreement phenomena in English are accounted for
by introducing some agreement statements about constructing the lexicon.

2.6. Syntax: Filling-in Storage

In the previous subsections, we have shown how we treat the following
WH-questions : )

(1) Who loves her?
(2) Whom does Paul love ?
(3) Who do you think meows?

We obtain these sentences by treating WH-phrases as filler for storages. The

verb love m (2), for instance, contains a storage in the Object position. This
storage, or a gap, is filled in by its NP filler whom.

So-called gaps are also found in relative clause constructions in English. In
this section, we will continue to show how storage categories are put to use for
the analysis of these constructions with gaps. Consider the following.
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(4) a kitten which Paul loves

Here, the transitive verb loves is missing its Object. Through the bridging
function of a relative pronoun which, the antecedent NP a kitfen is interpreted
as taking the role that is played by the Object.

In traditional literature, however, we find two syntactic analyses of this type
of construction, the NP-S' analysis and the N’-S’ analysis, as shown below :

(5)  NP-S’Analysis
NP

T~

NP g
a kitten which Paul loves

(6) - N'-S Analysis

a kitten which Paul loves

Although classical Montague grammar and GPSG have adopted the N’-§'
analysis which seems to render a simpler semantic description, we will show
here how the NP-§’ analysis as commonly accepted in TG or GB can easily be
accommodated into our ACG.

Unlike WH-question phrases, we treat relative pronouns as phrases of a
functor category as schematized below :

(7) COMPrel= (({NP[x,#,%,@]}, S[fin]), ({NP[x,#%,@ ]}, NP[y#%,
@]))
where x, y are parameters of INDEX,
i that of NUMBER,
% that of PERSON, and
@, @ those of CASE.

This then can be instantiated into various forms:
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(8)
a. which: (({NP[x, #, %, @]}, S[fin]), ((NP[x, #, %, @]}, NP[y, #, %,
@])
b. who: (({NP[x, #, %, nom]}, S[fin]), ((NP[x, #, %, @]}, NP{y, #, %,
@l)
c. whom: (({NP[x, # %, acc]}, S[fin]), ({NP[x, #, %, @]}, NP[y, #, %,
@)))

It should be noted that these parameters must be anchored to specific values
whenever possible and that the occurrence of a parameter in a category may
create a crucial difference. For example, unlike a simple NP, the occurrence
of an INDEX parameter x in NP[x] makes this NP an indexed NP and thus
a candidate for storage. ‘

On the basis of (8), we can easily derive the following relative NP’s:

9
a. kittens which Paul loves
b. Paul, who loves Pommy
c. a girl who we think meows

For convenience’s sake, we shall represent each analysis in a vertical form
by first listing all the lexical signs and then each phrase obtained by GFA. We
also annotate the anchoring of parameters and the specification of other
feature values forced by GFA under each appropriate constituent category.

By analyzing (9a), we first show that the antecedent kiifens has the same
INDEX value as that of the stored category in the Object position of the verb
loves, thus being interpreted as playing the role of being loved by Paul.

(10
a. a kitten: NP[z,s3]/z=2, @’
-b. which: (({NP[x, #, %, @]}, S[fin]), ((NP(x, #, @’]}, NP[y, # %,
- @1]))/x=2, @=acc
c. Paul: NP[x,s3]/x=1, nom
d. loves: ({NP[2,acc]}, (NP[1,s3,nom], S[fin, s3]))
cd. Paul loves: ({NP[2,acc]}, S[fin, s3])
b{cd). which Paul loves: ({NP[2, #, %, @]}, NP[y, #, %, @'])/#=s,%=3
a(b(cd)). a kitten which Paul loves: NP[y, s3, @’]

(cd) is obtained by first anchoring x to 1 and forcing the CASE nom to (c)
and then cancelling NP[1, 3, nom] in (d). (b(cd)) is then obtained by a similar
process. Here, the INDEX parameter x is anchored to 2 and the CASE
parameter, to ace. Finally, (a(b(cd)) is obtained with the INDEX parameter z
in (a) being anchored to 2 and with the NUMBER and CASE parameters #
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and % in (b(cd)) anchored to s and 3, respectively. This whole process of
anchoring, forcing, matching and cancellation under GFA may be represented
by the following annotated tree:

1 a’(b’(c’d)): NPly, s3, @’]

, B (Cd))g g o=
a a/Zzz’ @’ /# S, /O 3

cd

b b/x=2. @ =acc /\

¢ : ¢/x=1, nom d

On the basis of lexical signs (a), (b), (c), and (d), we can interpret the above
tree and describe how the category at the topmost node is obtained. This
singular 3rd person NP has two latent parameters y and @’ for ROLE INDEX
and CASE, which will be determined when it is used in a large context.

As claimed by Cooper and Engdahl (in preparation), we don’t distinguish
so-called nonrestrictive relative clauses from restricive ones. We thus treat
(9b) just like any other relative clauses. Here we show that the antecedent Pauxl
has the same ROLE INDEX as the stored Subject of a verb phrase loves Paul
and also that they agree in NUMBER and PERSON. For (9b), we assume to
have been given the following piece of basic information :

@12
a. Paul: NP[x,s3]
b. who: ({NP[x, #, %, nom]}, S[fin]), ({NP [x, #, %, @]}, NP[y, #, %,
e])}
c. loves Pommy: ({NP[1, s3, nom]}, S[fin, s3])

On the basis of (12), we then construct the following annotated tree :

(13 ‘ a'(b'c) : NPly,s3, @]

a’ ta/y=1 b e

N

Wby =5, %=3 ©
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Note here that the relative pronoun who functions as a bridge for relaying
information concerning ROLE, NUMBER, and PERSON between the anteced-
ent and the storage or the gap. Note also that the CASE value of the relative
pronoun is determined by the CASE value of its corresponding storage.

Finally, we analyze (9¢c) to show how the storage in an embedded sentence
may be filled by its antecedent through a bridging relative pronoun COMPrel.
We are again provided with some basic pieces of information concerning each
lexical item of phrase occurring in (9c).

9
a. a girl : NP[x,s3]
b. Who: (({NP[X: #7 @, nom]}y S[fin]), ({NP[X, #y %9 @]}1 NP[Y! #, %)

a)))
c. we: NP [x, pll, nom]

d. think : (S[fin], (NP[1, #, %, nom], S[#, %, fin]))
e. meows: ({NP[1’, s3,nom]}, S [s3, fin])
GFA applies to (d) and (e), yielding :

(15 (diss) e think meows: ({NP[1’, s3, nom]}, (NP[1, #, %, nom], S[#, %,
fin]))

By anchoring the ROLE INDEX parameter x in (c) to 1 and also the
NUMBER and PERSON parameter # and % in ((diss)e) to pl and 1, respective-
ly, we obtain :

{16) ((Cix=1)(d/sa)e)scnt, %=1)) we think meows: ({NP[1’s3, nom]}, S{pl, 1,
fin])

This then combines with (b/x= 1, #=s. %=3), yielding:

(17 who we think meows: ({NP[1’,s3, @]}, NP[y, s3, @])

Finally, we anéhor the INDEX x in (a) to 1’ and obtain (9¢). The topmost
local tree is represented as in:
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(a9 NPy, s3, @]

NP[I)s3,@] ({NP[1 s3 @]}, NP[y,s3, @])

AN

a girl who we think meows

This tree is fully admissible by our generalized functional application GFA.

2.7. Grammatical Fﬁnctions and Semantic Roles

In ACG, every NP is to be assigned a grammatical relation GR. This GR is
purely a syntactic notion such that even so-called dummy NP’s, or expletives,
are assigned a GR.

We have two GR’s, Subject and Object, in the grammar. These notions are
defined as follows:

(1) Subject
The NP occurring in the functor category (NP,S) is the Subject of S.

(2) Object
Let C and C’ be any categories such that C' =((..., NP,...),C). Then each
NP, occurring in C is an Object of the category C’. ,

Suppose we have a category, (NP2,(NP1,S)). Then, NP1 is the Subject of S, and
NP2 the Object of the entire category, that is, a verb. For another example,
consider a preposition of the category (NP, PP). This NP is a prepositional
Object.

Some categories may have multiple Objects. In such a case, these Objects are
distinguished by their position in the sequence. By convention, we may name
the rightmost NP in the category sequence (..., NP,,..) within a functor category
((...,NP,,...),C) Direct Object and the second rightmost NP Indirect Object.

Our definition of grammatical relations can be illustrated as below :

(3 ((-+, NP3, --NP2), (NP1, S))
Subj
DObj
10bj
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Theoretically speaking, there may be some non-NP categories intervening
between the Direct and the Indirect Object. So we allowed dots between NP3
and NP2 above.

Grammatical relations are, in a proper sense, relations holding between
functors and their argument categories. But we have defined them as relations
on constituent categories of a functor category. This is certainly a departure
from the traditional way of defining grammatical categories. It will not,
however, result in confusion as long as we understand GR as an attribute of a
category, for every such information encoded in it is transferred to its argu-
ment category by the convention of forcing on category matching. As a
consequence, GR’s are eventually assigned to argument categories.

Unlike GR’s, semantic roles are not assigned to each NP in a sentence.
Specifically, no semantic role is assigned to expletives. The impersonal pro-
noun 7 is not assigned a role, either. Excepting these few, NP’s are in general
potential role carriers.

But strictly speaking, roles are not assigned to linguistic or metalinguistic
objects like expressions and categories, but to real objects that are involved in
some relation. .Consider a statement made by the following sentence :

{4) Paul loves Pommy.

This statement may be interpreted as describing a situation in which Paul
loves Pommy. Here it is not the NP’s occurring in sentence (4), but the boy
named Paul and the female kitten named Pommy referred to by those NP’s
that are understood as each having a unique role in the relation of love, Only
in modelling such a situation and talking about such roles, we can say in
general that, given a basic state of affairs of the type <R, a;...,, an; 1>>, we can
say that each object assigned to each a, plays a unique role with respect to the
relation R. Abstracting from real situations one step further away, we may
also be able to speak of roles as if they were associated with certain categories
of expressions if they occur in a certain grammatical construction.

The feature INDEX is thus introduced to make it possible to talk about
“semantic” roles of categories. The transitive verb love, for instance, belongs
to a functor category (NP[2], (NP[1],S) with each NP occurring in it assigned
an INDEX value. In the semantic part of its lexical sign, we have as its
meaning a state of affairs <(<LOVE, IND.1, IND.2 ;1>>. We then interpret NP
[1] and NP[2] as each taking the role IND.l and IND.2, respectively, in the
relation of love.’

Consider the case of a lexical sign kitfen where a parameter is assigned as
an INDEX value :
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(5) kitten N[x]
|
«KITTEN,IND.x ;15>

From this sign, we are to understand that an instance of the parameter x in N
[x] denotes an individual that has the role of being a kitten.
Consider a bit more complicated case :

(6) NP[y]
NP[2] ({NP[2]},NP[y])
({NP[2]},S[fin]),({NP[2]},NP[y])) ({NP[2]} ,S[fin])

NP(1] ({NP{2]},(NP[1],S(fin]))

| |

a kitten which Paul loves

From this tree, we are supposed to be able to talk about the semantic roles of
a kitten NP[2] of the entire phrase a kitten which Paul loves NP[y] if we know
about the states of affairs in which the objects denoted by these NP expres-
sions play roles. In the case of NP[2], we understand that the individual
denoted by a kitten of NP[2] plays the role of being loved. But in the latter
case, we only know that the individual denoted by the entire phrase NP[y] has
some potential role associated with the parameter y.

So far we have just appealed to intuitive understanding in explaining how
the INDEX feature can be used to interrelate SYNTAX with SEMANTICS and
to obtain the information.about semantic roles. The use of INDEX will become
more apparent if we show how a parameter is anchored to an-object and how
states of affairs are merged in our ACG system.

2.8. Semantics: Merging

By merging various states of affairs together, we accumulate picecs of infor-
mation conveyed by each of them. For example, given the following two basic
states of affairs, or simply soa’s,

(1)
a. «KKITTEN, x;1>»
b. <KIND,x ; 1>

we can merge them into a larger state of affairs in which some individual
object x is a kitten.
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()
«KITTEN,x; I>
INDx; I»
OR simply, <KKITTEN, IND.x ; I)>®

This soa is then interpreted as conveying the information about some x
accumulated from pieces of information about the same x conveyed by soa’s
(1a) and (1b).

Consider another example

3)
a. <<KITTEN, IND.x; 1>>
b. (KFEMALEx; 1»

Merging soa’s, in general, means putting them together. From (3), we obtain :

)
«KITTEN, IND.x; 1))
<FEMALEXx ; 1>

This merged state of affairs is interpreted as conveying the accumulated
information about x that it is an individual female kitten.

But sometimes merging means more than just putting soa’s together. It
requires setting the value of some index to a parametar or an object. consider
the following example :

(5)
a. <{=,IND.x,Pommy ; 1>
b. <KLOVE, IND.1,IND.2 ; 1>

Here nothing particular happens unless either of the indices 1 or 2 is assigned
an appropriate value. Suppose we set the value of 2 to the parameter x. Then
from the two soa’s we obtain the following merged soa:

(6)
<«¢=,IND.x,Pommy : 1>
<(LOVE, IND.1,IND.x; 1>

& IND x may be interpreted as “the parameter x restricted to the type IND OF individual
objects.

® A parametric soa, that is, a soa containing a parameter, is fully interpreted only when
each parameter occurring in it is anchored to an appropriate value, or a real object.
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On the basis of Substitution for Identicals, this merged soa can be shown to
convey the same information as:

(7) <KLOVE,IND.],IND.Pommy ; 1»>

The above soa contains the information about Pommy that it is loved. Here
again the merging of soa’s has resulted in the accumulation of information
about Pommy.

The setting of INDEX values to parameters is constrained by the syntactic
operation GFA. If GFA has forced the value of the parameter x in NP[x]
Pommy to be set to 2 in order successfully to concatenate it with an expression
loves of the category (NP[2], (NP[1],S)), then that value of INDEX, namely
2, which is labelled to one of the argument roles in the soa described by the
verb loves should be replaced by the parameter of the parametric soa described
by the NP Pommy in merging these two soa’s. This operation can be seen as

de-labelling.

@

GFA: (NP[2], (np[1], S)) NP[x]
2
forced matching
ing ¢ «R,argl, arg2; pol>>
Merging : g 2 gs,P NP[2]

! |

parametrization

Corresponding to the syntactic category Co of a functor expression is a soa
labelled with argument roles. If GFA forces the parameter of its argument
category Ci to be matched with any of the INDEX values in Co, then
MERGING replaces the argument role corresponding to the argument cate-
gory Ci with an appropriate parameter.

The following illustrates how GFA and MERGING interacts with each
other:
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(9)
LEXICON GFA (matching)
'NP[X] SR YU NP[1] MERGING (parametrization)
«=,IND.x, Paul; 15> ~==femrm — o mmm i i i
xty
x:1
\Paul y
4 ! :
(NP[2], (NP[1, 53], S[fin, s31)) ) =, IND. y, Paul; 15>
- ) H
|
<<LOVE,IND.1,IND.2;1>» -p-— ===~ —fm i e e <LOVE,IND.y, IND. x;1>>
|
\10%5 J x'2 «=,IND.x, Pomr‘ny; 1>
NP[x] - = —= = === —— — Y---- NP[2] 2:x
«=, IND. x, Pommy ; 1>> - i s e e l
\Pommy /

As shown above, parametrization in MERGING not only sets the value of an
index to a parameter, but also replaces a parameter with another parameter
to avoid the collision of parameters.

Parametrization assigns a distinct value unless specified otherwise. In a
case, for instance, involving reflexive pronouns, we require two distinct indices
corresponding to two distinct argument roles to be replaced with one and the
same parameter.

(10
a. Pommy scratches herself.
b. <¢SCRATCH,IND. %, IND. x; 1>>
«=,IND.x,Pommy ; 1>

In {0, Pommy plays the role of a scratcher and at the same time that of
a scratchee.
3. Implementation of GFA In Prolog
In this section, we present the implementation strategy of GFA in Prolog.
Before presenting the entire program, the representation schemes for each

element used in ACG will be discussed.

3.1. Brief Introduction to Prolog
Prolog is a logic programming language which is well suitable for the
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language parsing. Since it is a kind of relational language, it is very easy to
implement the functional application in it. The Prolog program consists of
facts and rules. Facts are instantiated predicates, i.e., propositions represent-
ing facts which holds in the domain. Rules are statements of the form :

A:-Bl, B2,---,Bn.

, where n=0. A is the head of the rule, and the Bi’s are its body. It has both the
declarative and procedural semantics. As a declarative meaning, it is interpret-
ed as that A is true if Bl, B2,---, and Bn are true. It is interpreted procedurally
as follows:

To prove A, we must prove Bl, B2,---, and Bn.
The logic program is a finite set of rules and each rule is a Horn clause.

3.2. Representing Categories

The syntactic category of ACG is represented by the complex term in
Prolog. It means that each category is denoted by the functor symbol* and a
set of features is represented by the argument list of the complex term as
follows :

Category([F1,F2,:--,Fn])

, where each Fi means the feature of the category Cafegory. For example, the
syntactic category of NP Paul is represented as follows :

np([X,s3,masc])

This representation denotes that the category of Paul is that it is a 3rd person
singular masculine NP, Here, X corresponds to the index parameter.

A functor category is represented as a pair of categories. Consider the case
of transitive verb Joves. It has the syntactic component as below :

(NP[2,acc], (NP[1,s3,nom],S[fin]))

It is implemented as the following representation :
(np(['Y ,acc]),(np[X,s3,nom], s([fin])))

Here, we use the logical variable X, Y to specify the index parameters for the
nominative NP and accusative NP, respectively. Since it is denoted as differ-
ent logical variables, they are instantiated by the separate substitution. Even

1 Don't confuse the functor symbol in Prolog with the functor category in ACG.
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though they are represented by the different variables, they can be anchored to
the same individual when X and Y are unified by other conditions. This is
reasonable because the accusative NP and nominative NP can be the same
person.

The representation of the storage category is quite similar to the other
categories except that the qualified bracket { } is used in its representation.
For example, the syntactical component of a relative pronoun who appeared
in (14) of Section 2.2 which has a storage, is represented as below :

(({np([X,nom,person,rel])}, s({1)),mp([{X1),np([X])))

, where the component between {and} is a stored category.

3.3. Use of Logical Variables As Index Parameters

For representing the index parameters in ACG, we use the logical variables.
When a specific individual is matched, the logical variable is instantiated by
that individual via the unification provided in Prolog. For example, consider
the derivation tree (2) in Section 2.3. In this tree, the index parameter of NP
Pommy is set to 2 in the functional application. This is done by the functor
category of the verb Jloves. This can be accomplished in our system by unifying
two variables corresponding to the index parameter of the category of Pommy
and the index parameter of the argument category of loves, In Prolog, the
unified variables are thought to denote the same constant and, in fact, when a
variable is instantiated to a specific constant, all unified variables are also
instantiated to the same constant automatically.

By using the logical variable as index parameter, we can simplify the
matching and anchoring of index parameter. Actually, the notation itself used
in the index parameter is meaningless. They are used only in GFA procedure
for matching. Thus, by the logical variables and the unification in Prolog, we
can easily combine the parameters so that they point appropriate individuals.

The logical variable makes it easy to unify the semantic component by the
use of the same variable in the semantic representation. As we said before,
when a variable is instantiated to a specific individual, all the same variables
and unified variables are instantiated to that one simultaneously. Therefore, as
the nominative and accusative NPs in a verb loves are anchored to individuals,
their corresponding variables in the semantics of loves are also instantiated to
the same individuals since they are represented by the same variables, respec-
tively.

Consider the derivation tree (2) in Section 2.3 once again. In this derivation,
as the index parameter for each category is matched, the parameters in the
semantic representation of the verb loves are instantiated to Paul and Pommy,
respectively. That is, as Pommy is used as an accusative NP in this derivation,
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it is substituted as an individual of IND.2 by semantic unification. Here, we do
not describe the semantic unification precisely. We hope that it will be present-
ed in a later paper.

3.4. Implementation of GFA

Prolog has both the declarative and procedural semantics. In addition, since
it is a kind of relational language, it is very easy to implement the GFA
procedure according to its functional semantics. By the definition of GFA as
shown in Section 2.5 (20), the top level procedure gfa for GFA is given as
follows :

gfa(({Storage}, (CAT1, CAT?2)), ARGSEQ, ({Storage}, CAT?2)):-
match_cat(CAT1,ARGSEQ).

gfa((CAT1,CAT?2), ARGSEQ,CAT?):-
match_cat(CAT1,ARGSEQ).

In this program, the first rule shows the case when the storage category is
included!!. The identifiers starting with the upper case letter are variables in
Prolog. The unification scheme used in Prolog allows a variable to be a
sequence of categories. The third argument is a return value of the GFA
procedure. The match cat predicate is satisfied if the first argument matches
with the second argument ARGSEQ which is a sequence of the argument
categories. The second rule shows the normal case of GFA.

In order for a category to be matched with other category, the latter should
be a subcategory of the former. It is checked by the feature list of category.
In other words, A’ is a subcategory of A if A is a subset of A’ by definition (7)
in Section 2.5. It can be proved by comparison of each element of two feature
lists. The following program shows the check of the subcategory relationship
between two categories'.

sub_cat{C1,C2) :-
Cl=..[CAT,Feature 1],
C2=..[CAT,Feature 2],
sublist(Feature 1,Feature 2).

sublist (], -).
sublist ((H | T], [H | T2]):-
sublist (T, T2)

The first and second subgoal in the first rule sub-cat are to separate the
argument of the complex terms C1 and C2 representing categories, respective-

11 The first rule of gfa corresponds to (19ii) of §2.3.
12 The second rule of gfa corresponds to (19i) of §2.3.
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ly. The feature list of each category is denoted as Featurel and Feature 2,
respectively. After that, the procedure sublist checks if the first list contains
less elements than the second one. Of course, the common elements should be
equal to each other. The first statement of the procedure sublist means that
the number of elements of the second argument is greater than or equal to that
of the first, for the first argument is the empty list [], The anonymous
variable (_) denotes any variable. The second statement means that if the first
elements H of each list are the same, then the remaining elements T and T2 are
checked in the subgoal sublist (T,T2).

The whole program is contained as Appendix of this paper. Followmgs are
some examples of calling of the GFA procedure.

?- gfa((np([Y,acc]),p([X,s3,nom]),s([fin]))), np([Z,acc]),VAL).

VAL =(np([_91,53,nom]),s({fin]))
yes

?- gfa((np(['Y,acc]),(np([X,nom]),s([ fin]))),np([2,acc,s3,person,fem]), VAL).

VAL =(np([_91,nom]),s([fin]))
yes

?- gfa(((pp([in]),np([ Y ,acc])),(np([X,nom]),s([1))), (np([Z acc,s3,impers]),
pp([in])),VAL).

VAL =(np([-102,nom]),s([]))
yes

?- gfa(({np(['Y,acc]) },(np([X,nom]),s([bse]))),np([Z,nom]),VAL).

VAL =({np([-82,acc])},s([bse]))
yes

In this sample session, the notation starting with an underbar (_) means the
internal representation of variables in Prolog, like _91. This program gfa is
used in the paring phase of natural language, based on ACG.

4. Conclusion

Our description of ACG has been sketchy and its implementation, partial. In
this paper, we have been mainly concerned with spelling out the definition of
categories and the notion of generalized functional application. This much, we

believe, has been accomplished here.

ACG differs from classical categorial grammar in two main respects. First,
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as in GPSG, it treats a basic category not as an unanalyzable atom, but a set
of feature-value pairs. Note, however, that ACG does not introduce category-
valued features, but only atom-valued ones. Secondly, it introduces storage
categories to deal with gaps (for instance, involving WH-questions). On the
basis of these categories, functional application is generalized. Our notion of
storage categories is preferred to that of stacks because ours perserves the
information as to where categories are stored or where gaps are possible.

ACG resembles HPSG in many respects. But unlike HPSG, ACG does not rely
on the notion of head, but rather on that of functor. A functor is treated in
ACG as a pivotal category because it contains a full piece of information
concerning the local configuration of a well-formed phrase. Given a functor,
we know exactly what kind of tree can be obtained from it, for it provides the
information concerning the mother and its daughter categories.

GFA is simply a reformulation of functional application based on the new
definition of categories. It especially accommodates storage categories and
treats stored categories as reserved for use at the final stage of functional
application. Stored categories are thus ignored in the operation of functional
application till they are absolutely needed.

We have shown in this paper how these notions of categories and GFA apply
to agreement and WH-gap phenomena in English. For agreement, we have
introduced into ACG something that resembles feature cooccurrence restric-
tions in GPSG. And for WH-constructions, we utilize storage categories.

Our implementation of ACG in Prolog has been restricted to categories and
GFA. We have not shown how it works for those cases illustrated in section 2.
But it should be a routine application of our computational formulations.

We have claimed that the semantics of ACG is situation-theoretic or
information-based. Section 2.8 has been written to indicate our interest, but not
too adequately developed to support our claim. This we hope to do in our
future work.
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APPENDIX
/*‘t#*****t**t#l'*#**!##***t*##t#t##ttt*************************** /
/* Generalized Functional Application */

/* o First Argument denotes the Functor Category. */

/* o Second Arguments are a Sequence of Argument Categories. */
/* o Categories are represented as complex terms. +/

/* o{---} denotes the Storage. «/

/#tt*##*********tt**##ttt**#tt##*i*t*tt*************************** /

gfa(({STG}, (CAT1, CAT2),ARGSEQ,({STG}, CAT2)):- % If contains
storage
match_cat(CAT1,ARGSEQ).

gfa((CAT1,CAT2),ARGSEQ,CAT?) -
match_cat(CAT1,ARGSEQ).

/* Checking if the first argument is matched to the second*/
match_cat((CAT1,T), ARGSEQ) :- % if the first one is a sequence
match(CAT1,ARGSEQ),
match(T,ARGSEQ).
match_cat(CATSEQ,ARGSEQ) :-
match(CATSEQ,ARGSEQ).

/*Procedure for determining if the second sequence contains
the subcategory of the first category*/

match(CAT,(CATLT)) :-
sub_cat(CAT,CAT1).

match(CAT,(CAT1,T)) -
match(CAT,T).

match(CAT,CAT1):- % CAT]1 is not s sequence
sub_cat(CAT,CATI).

/*Procedure for checking if the second argument is a
subcategory of the first */
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sub_cat(C1,C 2) :-
Cl=--[CAT Feature 1],
C2=.-[CAT Feature 2],
/*If the same category, check the feature list */
subfeature(Feature 1,Feature 2).

/*Subfeature satisfies if the first list contains less number of same ele-
ments than the second list */
subfeature([], -).
subfeature((H | T], [H | T2]) :-
subfeature(T, T2).
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