공학 수학 I

심형보 교수
서울대학교 공과대학 전기정보공학부

2015년 2월

Lesson 1: Introduction to matrix

- terminologies
- addition and scalar multiplication
- product of matrices
- transpose of a matrix
Matrix (행렬) & Vector (벡터)
행렬(벡터)의 addition & scalar multiplication

\[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}, \begin{bmatrix}
-1 & 0 \\
2 & 0
\end{bmatrix}, \begin{bmatrix}
1 \\
2
\end{bmatrix}
\]

합과 스칼라 곱의 연산법칙

For \(A, B, C \in \mathbb{R}^{m \times n}\) and \(c, k \in \mathbb{R}\),

\[
A + B = B + A \\
(A + B) + C = A + (B + C) \\
A + 0 = A \\
A + (-A) = 0
\]

and

\[
c(A + B) = cA + cB \\
(c + k)A = cA + kA \\
c(kA) = (ck)A \\
1A = A
\]
행렬의 곱

\[
\begin{bmatrix}
1 & 2 & 1 \\
3 & 4 & 1
\end{bmatrix}
\begin{bmatrix}
-1 & 0 & 1 \\
2 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix} =
\]
행렬 곱의 연산법칙

For $A, B, C \in \mathbb{R}^{m \times n}$ and $k \in \mathbb{R}$,

$(kA)B = k(AB) = A(kB)$
$A(BC) = (AB)C$
$(A + B)C = AC + BC$
$C(A + B) = CA + CB$

Transposition

$(A^\top)^\top = A$
$(A + B)^\top = A^\top + B^\top$
$(cA)^\top = cA^\top$
$(AB)^\top = B^\top A^\top$
예: 토지의 용도 변경

예: 회전 변경
Lesson 2: System of linear equations, Gauss elimination

- existence and uniqueness of solution
- elementary row operation
- Gauss elimination, pivoting
- echelon form

선형연립방정식 (system of linear equations) & 해 (solution)

\[a_{11}x_1 + \cdots + a_{1n}x_n = b_1\]
\[a_{21}x_1 + \cdots + a_{2n}x_n = b_2\]
\[\vdots\]
\[a_{m1}x_1 + \cdots + a_{mn}x_n = b_m\]
Existence and uniqueness of solution (해의 존재성과 유일성)
해를 구하는 법

\[x_1 - x_2 + x_3 = 0 \]
\[10x_2 + 25x_3 = 90 \]
\[-95x_3 = -190 \]
\[2x_1 + 5x_2 = 2 \]
\[-4x_1 + 3x_2 = -30 \]

\[\begin{bmatrix} 2 & 5 & 2 \\ -4 & 3 & -30 \end{bmatrix} \]

1. 두 식의 위치 교환
2. 한 식을 다른 식에 더하기
3. 한 식에 0 아닌 상수 곱하기
4. 한 식을 상수배하여 다른 식에 더하기

1. 두 행의 위치 교환
2. 한 행을 다른 행에 더하기
3. 한 행에 0 아닌 상수 곱하기
4. 한 행을 상수배하여 다른 행에 더하기
Gauss elimination

\[a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \]
\[a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \]
\[a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \]

Gauss elimination (partial pivoting)

\[x_1 - x_2 + x_3 = 0 \]
\[2x_1 - 2x_2 + 2x_3 = 0 \]
\[10x_2 + 25x_3 = 90 \]
\[20x_1 + 10x_2 = 80 \]
Gauss elimination (the case of infinitely many solutions)

\[
\begin{bmatrix}
3.0 & 2.0 & 2.0 & -5.0 & 8.0 \\
0.6 & 1.5 & 1.5 & -5.4 & 2.7 \\
1.2 & -0.3 & -0.3 & 2.4 & 2.1
\end{bmatrix}
\overset{\downarrow}{\rightarrow}
\begin{bmatrix}
3.0 & 2.0 & 2.0 & -5.0 & 8.0 \\
0 & 1.1 & 1.1 & -4.4 & 1.1 \\
0 & -1.1 & -1.1 & 4.4 & -1.1
\end{bmatrix}
\overset{\downarrow}{\rightarrow}
\begin{bmatrix}
3.0 & 2.0 & 2.0 & -5.0 & 8.0 \\
0 & 1.1 & 1.1 & -4.4 & 1.1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Gauss elimination (the case of no solution)

\[
\begin{bmatrix}
3 & 2 & 1 & 3 \\
2 & 1 & 1 & 0 \\
6 & 2 & 4 & 6
\end{bmatrix}
\overset{\downarrow}{\rightarrow}
\begin{bmatrix}
3 & 2 & 1 & 3 \\
0 & -\frac{1}{3} & \frac{1}{3} & -2 \\
0 & -2 & 2 & 0
\end{bmatrix}
\overset{\downarrow}{\rightarrow}
\begin{bmatrix}
3 & 2 & 1 & 3 \\
0 & -\frac{1}{3} & \frac{1}{3} & -2 \\
0 & 0 & 0 & 12
\end{bmatrix}
\]
Echelon form (계단 형태)

Gauss elimination:

\[
\begin{bmatrix} A & b \end{bmatrix} \Rightarrow \begin{bmatrix} R & f \end{bmatrix}
\]

\[
[R, f] = \begin{bmatrix}
 r_{11} & r_{12} & \cdots & \cdots & r_{1n} & f_1 \\
 r_{22} & \cdots & \cdots & \cdots & r_{2n} & f_2 \\
 \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
 r_{rr} & \cdots & \cdots & r_{rn} & f_r \\
 & & & & f_{r+1} \\
 & & & & & f_m
\end{bmatrix}
\]

Lesson 3: Rank of a matrix, Linear independence of vectors

- linear combination (of vectors)
- linear independence (of vectors)
- rank (of a matrix)
- practice using MATLAB
Linear combination (of vectors) & linear independence (of a set of vectors)

Example

\[\mathbf{a}_1 = \begin{bmatrix} 3 & 0 & 2 & 2 \end{bmatrix} \]
\[\mathbf{a}_2 = \begin{bmatrix} -6 & 42 & 24 & 54 \end{bmatrix} \]
\[\mathbf{a}_3 = \begin{bmatrix} 21 & -21 & 0 & -15 \end{bmatrix} \]
Rank of a matrix

DEF: rank $A = $ 행렬 A에서 선형독립인 row vector의 최대 수

$$
\begin{bmatrix}
3 & 0 & 2 & 2 \\
-6 & 42 & 24 & 54 \\
21 & -21 & 0 & -15
\end{bmatrix}
$$

Properties of ‘rank’

THM: elementary row operation을 해서 얻는 모든 행렬들은 같은 rank를 가진다. (Rank는 elementary row operation에 대하여 invariant 하다.)

$$
\begin{bmatrix}
3 & 0 & 2 & 2 \\
-6 & 42 & 24 & 54 \\
21 & -21 & 0 & -15
\end{bmatrix}
$$
Properties of ‘rank’

THM: rank A is a linearly independent column vector of the maximum number.
(Therefore $\text{rank } A = \text{rank } A^T$.)
Properties of 'rank'

- For $A \in \mathbb{R}^{m \times n}$, $\text{rank } A \leq \min\{m, n\}$.
- For $v_1, \ldots, v_p \in \mathbb{R}^n$, if $n < p$, then they are linearly dependent.
- Let $A = [v_1, v_2, \ldots, v_p]$ where $v_i \in \mathbb{R}^n$.
 - If $\text{rank } A = p$, then they are linearly independent.
 - If $\text{rank } A < p$, then they are linearly dependent.

Ex:

$$
\begin{bmatrix}
3 & 0 & 2 & 2 \\
-6 & 42 & 24 & 54 \\
21 & -21 & 0 & -15
\end{bmatrix}
$$

MATLAB을 사용한 실습

http://www.mathworks.com
Lesson 4: Vector space

- vector space (in \mathbb{R}^n), subspace
- basis, dimension
- column space, null space of a matrix
- existence and uniqueness of solutions
- vector space (in general)

Vector space
선형연립방정식의 해: 존재성과 유일성

\[Ax = b \quad \text{with } A \in \mathbb{R}^{m \times n} \text{ and } b \in \mathbb{R}^m \]

1. existence: a solution \(x \) exists iff
 - \(b \in \) column space of \(A \)
 - \(\text{rank } A = \text{rank } [A \ b] \)
2. uniqueness: when a solution \(x \) exists, it is the unique solution iff
 - \(\dim(\text{null space of } A) = 0 \)
 - \(\text{rank } A = n \)
3. existence & uniqueness: the solution \(x \) uniquely exists iff
 - \(\text{rank } A = \text{rank } [A \ b] = n \)
4. existence for any \(b \in \mathbb{R}^m \): a solution \(x \) exists for any \(b \in \mathbb{R}^m \) iff
 - \(\text{rank } A = m \)
5. unique existence for any \(b \in \mathbb{R}^m \): the unique solution \(x \) exists for any \(b \in \mathbb{R}^m \) iff
 - \(\text{rank } A = m \) and \(\text{rank } A = n \) (i.e., \(A \in \mathbb{R}^{n \times n} \) has ‘full rank’)

Ex: \(\text{rank } A = r < n \quad \Rightarrow \)

Homogeneous case

\[Ax = 0 \quad A \in \mathbb{R}^{m \times n} \]
 - non-trivial solution exists iff \(\text{rank } A = r < n \)
 - 방정식의 수가 미지수의 수보다 적은 경우 항상 non-trivial solution을 가진다.

Q: Dimension of the ‘solution space’ =
Nonhomogenous case

\[Ax = b \neq 0 \quad A \in \mathbb{R}^{m \times n} \]

- Any solution \(x \) can be written as

\[x = x_0 + x_h \]

where \(x_0 \) is a solution to \(Ax = b \) and \(x_h \) is a solution to \(Ax = 0 \).

Vector space

: set of vectors with “addition” and “scalar multiplication”

For \(A, B, C \in V \) and \(c, k \in \mathbb{R} \),

\[
\begin{align*}
A + B &= B + A \\
(A + B) + C &= A + (B + C) \\
A + 0 &= A \\
A + (-A) &= 0
\end{align*}
\]

and

\[
\begin{align*}
c(A + B) &= cA + cB \\
(c + k)A &= cA + kA \\
c(kA) &= (ck)A \\
1A &= A
\end{align*}
\]
Examples of vector space

Normed space

: vector space with "norm"

ex: for $v \in \mathbb{R}^n$, the norm is $\|v\| = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$
Inner product space

: vector space with “inner product”

1. \((c_1 A + c_2 B, C) = c_1 (A, C) + c_2 (B, C)\)
2. \((A, B) = (B, A)\)
3. \((A, A) \geq 0\) and \((A, A) = 0\) iff \(A = 0\)
Determinant (of a matrix)

For $A \in \mathbb{R}^{n \times n}$,

$$\det A = |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} =$$
Elementary row operation & determinant

1. 두 행을 바꾸면 determinant의 부호가 반대가 됨
2. 똑같은 행이 존재하는 행렬의 determinant는 0
3. 한 행의 상수 배를 다른 행에 더해도 determinant 불변
4. 한 행에 0 아닌 c를 곱하면 determinant는 c배가 됨
 (c = 0인 경우도 성립하지만 쓸모는 없음)
Properties of ‘determinant’

- The determinant of a matrix A is equal to the determinant of its transpose A^T.
- If any row or column is zero, then the determinant of the matrix is zero.
- If two rows or two columns of the matrix are identical, then the determinant is zero.

THM: A matrix $A \in \mathbb{R}^{m \times n}$ has rank $r (\geq 1)$ iff
- A has a $r \times r$ submatrix whose determinant is non-zero, and
- determinants of submatrices of A, whose size is larger than $r \times r$, are zero (if exists).
Cramer’s rule

\[Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} x = b, \quad A \in \mathbb{R}^{n \times n}, \quad \det A =: D \neq 0 \]

Cramer’s rule:

\[x_1 = \frac{D_1}{D}, \quad x_2 = \frac{D_2}{D}, \quad \cdots \quad x_n = \frac{D_n}{D} \]

where

\[D_k = \begin{bmatrix} a_1 & \cdots & a_{k-1} & b & a_{k+1} & \cdots & a_n \end{bmatrix} \]

Ex:

\[\begin{align*}
2x - y &= 1 \\
3x + y &= 2
\end{align*} \]

Lesson 6: Inverse of a matrix

- inverse (of a matrix)
- Gauss-Jordan elimination (computing inverse)
- formula for the inverse
- properties of inverse and nonsingular matrices
Inverse of a matrix

For $A \in \mathbb{R}^{n \times n}$, the inverse of A is a matrix B such that

$$AB = I \quad \text{and} \quad BA = I$$

and we denote B by A^{-1}.

A^{-1} exists iff $\text{rank } A = n$ iff $\det A \neq 0$ iff A is ‘non-singular’

Computing the inverse: Gauss-Jordan elimination
A formula for the inverse

For $A = [a_{ij}] \in \mathbb{R}^{n \times n}$,
Properties about nonsingular matrix, inverse, and determinant

- Inverse of ‘diagonal matrix’ is easy.
- \((AB)^{-1} = B^{-1}A^{-1}\)
- \((A^{-1})^{-1} = A\)
- For \(A, B, C \in \mathbb{R}^{n \times n}\), if \(A\) is nonsingular (i.e., \(\text{rank } A = n\)),
 - \(AB = AC\) implies \(B = C\).
 - \(AB = 0\) implies \(B = 0\).
- For \(A, B \in \mathbb{R}^{n \times n}\), if \(A\) is singular, then \(AB\) and \(BA\) are singular.
- \(\det(AB) = \det(BA) = \det A \det B\)

Lesson 7: Eigenvalues and eigenvectors

- eigenvalues and eigenvectors
- symmetric, skew-symmetric, and orthogonal matrices
Eigenvalue and eigenvector of a matrix
Find eigenvalues and eigenvectors of

\[
A = \begin{bmatrix}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{bmatrix}.
\]

\[-\lambda^3 - \lambda^2 + 21\lambda + 45 = 0\]

\[\lambda_1 = 5, \quad \lambda_2 = \lambda_3 = -3\]

\[
A - 5I = \begin{bmatrix}
-7 & 2 & -3 \\
2 & -4 & -6 \\
-1 & -2 & -5
\end{bmatrix} \Rightarrow \begin{bmatrix}
-7 & 2 & -3 \\
0 & -\frac{24}{7} & -\frac{45}{7} \\
0 & 0 & 0
\end{bmatrix}
\]

\[
A + 3I = \begin{bmatrix}
1 & 2 & -3 \\
2 & 4 & -6 \\
-1 & -2 & 3
\end{bmatrix} \Rightarrow \begin{bmatrix}
1 & 2 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
Symmetric, skew-symmetric, and orthogonal matrices

Lesson 8: Similarity transformation, diagonalization, and quadratic form

- similarity transformation
- diagonalization
- quadratic form
Similarity transformation

행렬 $A \in \mathbb{R}^{n \times n}$가 n개의 선형독립인 e.vectors를 가질 때...
언제 행렬 A가 n개의 선형독립인 e.vectors를 갖나? (1)

언제 행렬 A가 n개의 선형독립인 e.vectors를 갖나? (2)

$$A_1 = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}, \quad \lambda_1 = -1, \quad \lambda_2 = -3$$

$$A_2 = \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix}, \quad \lambda_1 = \lambda_2 = -2$$

$$A_3 = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}, \quad \lambda_1 = \lambda_2 = -2$$
Diagonalization

Diagonalization이 안되는 경우
Quadratic form

\[Q = 17x_1^2 - 30x_1x_2 + 17x_2^2 = 128 \]
못 다룬 것들

교재의 연습 문제:
- trace,
- positive definite matrix, positive
 semi-definite matrix

out of the scope:
- (induced) norm of a matrix,
- (generalized eigenvectors,)
 Jordan form

further study:

http://snuon.snu.ac.kr [최신제어기법]
http://snu.ac.kr [최신제어기법]
http://lecture.cdsl.kr [선형대수 및 선형시스템 기초]

Lesson 9: Introduction to differential equation

- function, limit, and differentiation
- differential equation, general and particular solutions
- direction field, solving DE by computer
Function, limit, and differentiation

Basic concepts and ideas
\[y'(x) + 2y(x) - 3 = 0 \]
\[y'(x) = -27x + x^2 \]
\[y'(t) = 2t \]
\[y''(x) + y'(x) + y(x) = 0 \]
\[y''(x)y'(x) + \sin(y(x)) + 2 = 0 \]
\[\left\{ \begin{array}{l}
y_1'(x) + 2y_2(x) + 3 = 0 \\
y_2'(x) + 2y_1(x) + y_2(x) = 2 \\
2 \frac{\partial y}{\partial x}(x, z) + 3 \frac{\partial y}{\partial z}(x, z) - 2x = 0
\end{array} \right. \]

* ODE (ordinary differential equation) / PDE (partial differential equation)

* Solving DE:

* Explicit/implicit solution

Why do we have to study DE?
General solution and particular solution

Direction fields (a geometric interpretation of $y' = f(x, y)$)

An idea of solving DE by computer
Lesson 10: Solving first order differential equations

- separable differential equations
- exact differential equations
Separable DE

\[f, g: \text{continuous functions} \]

\[g(y)y' = f(x) \quad \Rightarrow \quad g(y)dy = f(x)dx \]
\[y' = g \left(\frac{u}{x} \right) \]

replacing \(ay + bx + k \) with \(v \)

\[(2x - 4y + 5)y' + (x - 2y + 3) = 0 \]
Exact differential equation: introduction

(observation:) For $u(x, y)$,

$$du = \frac{\partial u}{\partial x}(x, y)dx + \frac{\partial u}{\partial y}(x, y)dy : \text{differential of } u.$$

So, if $u(x, y) = c$ (constant), then $du = \ldots$.

Exact differential equation

Given DE: $M(x, y) + N(x, y)\frac{du}{dx} = 0$

If \exists a function $u(x, y)$ s.t.

$$\frac{\partial u}{\partial x}(x, y) = M(x, y) \quad & \quad \frac{\partial u}{\partial y}(x, y) = N(x, y)$$

then

$$u(x, y) = c$$

is a general sol. to the DE.

The DE is called "exact DE".
How to check if the given DE is exact?

How to solve the exact DE?
Lesson 11: More on first order differential equations

- integrating factor
- linear differential equation
- Bernoulli equation
- obtaining orthogonal trajectories of curves
- existence and uniqueness of solutions to initial value problem
Integrating factor

\[P(x, y)dx + Q(x, y)dy = 0 \]

\[(e^{x+y} + ye^y)dx + (xe^y - 1)dy = 0 \]
Linear DE

\[y' + p(x)y = r(x) \]
Bernoulli DE

\[y' + p(x)y = g(x)y^a, \quad a \neq 0 \text{ or } 1 \]

Verhulst logistic model (population model):

\[y' = Ay - By^2, \quad A, B > 0 \]
Orthogonal trajectories of curves

Existence of solutions to initial value problem

\[y' = f(x, y), \quad y(x_0) = y_0 \]

THM 1: IF \(f(x, y) \) is continuous, and bounded such that \(|f(x, y)| \leq K \), in the region

\[R = \{ (x, y) : |x - x_0| < a, |y - y_0| < b \} \]

THEN the IVP has at least one sol. \(y(x) \) on the interval \(|x - x_0| < \alpha \) where \(\alpha = \min(a, b/K) \).
Uniqueness of solutions to initial value problem

\[y' = f(x, y), \quad y(x_0) = y_0 \]

THM 2: IF \(f(x, y) \) and \(\frac{\partial f}{\partial y}(x, y) \) are continuous, and
bounded such that \(|f(x, y)| \leq K \) and \(\left| \frac{\partial f}{\partial y}(x, y) \right| \leq M \) in \(R \),
THEN the IVP has a unique sol. \(y(x) \) on the interval
\(|x - x_0| < \alpha \) where \(\alpha = \min(a, b/K) \).

Lesson 12: Solving the second order linear DE

- overview
- homogeneous linear DE
- reduction of order
- homogeneous linear DE with constant coefficients
Overview: Linear ODEs of second order

\[y'' + p(x)y' + g(x)y = r(x), \quad y(x_0) = K_0, \quad y'(x_0) = K_1 \]

1. The homogeneous linear ODE:

\[y'' + p(x)y' + g(x)y = 0 \] \hspace{1cm} (1)

has two "linearly independent" solutions \(y_1(x) \) and \(y_2(x) \).

2. Let \(y_h(x) = c_1 y_1(x) + c_2 y_2(x) \) with two constant coefficients \(c_1 \) and \(c_2 \), which is again a solution to (1).

3. Solve

\[y'' + p(x)y' + g(x)y = r(x) \] \hspace{1cm} (2)

without considering the initial condition. Let the solution be \(y_p(x) \).

4. The general solution is

\[y(x) = y_h(x) + y_p(x) = c_1 y_1(x) + c_2 y_2(x) + y_p(x). \]

Determine \(c_1 \) and \(c_2 \) with the initial condition.

Homogeneous linear ODEs of second order

\[y'' + p(x)y' + g(x)y = 0 \]

Claim: Linear homogeneous ODE of the second order has two linearly independent solutions.
How to obtain a basis if one sol. is known? (Reduction of order)
Obtaining another $y_2(x)$ with a known $y_1(x)$
Homogeneous linear ODEs with constant coefficients

\[y'' + ay' + by = 0 \]
Lesson 13: The second order linear DE

- case study: free oscillation
- Euler-Cauchy equation
- existence and uniqueness of a solution to IVP
- Wronskian and linear independence of solutions
Modeling: Free oscillation
Euler-Cauchy equation

\[x^2 y'' + a x y' + b y = 0 \]
Existence and uniqueness of a solution to IVP

\[y'' + p(x)y' + q(x)y = 0, \quad y(x_0) = K_0, \quad y'(x_0) = K_1 \]

THM: IF \(p(x) \) and \(q(x) \) are continuous (on an open interval \(I \ni x_0 \)), THEN \(\exists \) a unique sol. \(y(x) \) (on the interval \(I \)).

Wronskian and linear independence of solutions

With \(y_1(x) \) and \(y_2(x) \) being the solutions of

\[y'' + p(x)y' + q(x)y = 0, \]

Wronski determinant (Wronskian) of \(y_1 \) and \(y_2 \) is defined by

\[W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1y'_2 - y_2y'_1 \]

THM:
1. two sol. \(y_1, y_2 \) are linearly dep. on \(I \) \(\iff \) \(W(y_1(x), y_2(x)) = 0 \) at some \(x^* \in I \)
2. If \(W(y_1(x), y_2(x)) = 0 \) at some \(x^* \in I \), then \(W(y_1(x), y_2(x)) \equiv 0 \) on \(I \).
3. If \(W(y_1(x), y_2(x)) \neq 0 \) at some \(x^* \in I \), then \(y_1 \) and \(y_2 \) are linearly indep. on \(I \).
\[y'' + p(x)y' + q(x)y = 0 \] has two indep. sol. \(y_1 \) and \(y_2 \)

so, it has a general sol. \(y(x) = c_1 y_1(x) + c_2 y_2(x) \)
Any sol. to \(y'' + p(x)y' + q(x)y = 0\) has the form of \(c_1y_1(x) + c_2y_2(x)\)
Nonhomogeneous linear DE

\[y'' + p(x)y' + q(x)y = r(x) \]
Candidate for $y_p(x)$ in $y'' + p(x)y' + q(x)y = r(x)$

<table>
<thead>
<tr>
<th>Term in $r(x)$</th>
<th>Candidate for $y_p(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k e^{rx}$</td>
<td>$C e^{rx}$</td>
</tr>
<tr>
<td>$k x^n$, $n \geq 0$ integer</td>
<td>$K_n x^n + K_{n-1} x^{n-1} + \cdots + K_0 x + K_0$</td>
</tr>
<tr>
<td>$k \cos \alpha x$</td>
<td>$K \cos \alpha x + M \sin \alpha x$</td>
</tr>
<tr>
<td>$k \sin \alpha x$</td>
<td></td>
</tr>
<tr>
<td>$k e^{\gamma x} \cos \alpha x$</td>
<td>$e^{\gamma x}(K \cos \alpha x + M \sin \alpha x)$</td>
</tr>
<tr>
<td>$k e^{\gamma x} \sin \alpha x$</td>
<td></td>
</tr>
</tbody>
</table>

The above rules are applied for each term $r(x)$.
If the candidate for $y_p(x)$ happens to be a sol. of the homogeneous equation, then multiply $y_p(x)$ by x (or by x^2 if this sol. corresponds to a double root of the characteristic eq. of the homogeneous equation).

\[y'' + 4y = 8x^2 \]
\[y'' - 3y' + 2y = e^x \]

\[y'' + 2y' + y = e^{-x} \]

\[y'' + 2y' + 5y = 1.25e^{0.5x} + 40\cos 4x - 55\sin 4x \]

\[y'' + 2y' + 5y = 1.25e^{0.5x} + 40\cos 2x \]

\[y'' + 2y' + 5y = 1.25e^{0.5x} + 40e^{-x}\cos 2x \]
Solution by variation of parameters

\[y'' + p(x)y' + q(x)y = r(x) \]
Higher order homogeneous linear DE

\[y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = 0 \] \hspace{1cm} (H)

General sol.: \[y(x) = c_1y_1(x) + c_2y_2(x) + \cdots + c_ny_n(x) \]
where \(y_i(x) \)'s are linearly indep. sol. to (H).
\(y^{(n)}(x) + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = 0, \quad y^{(i)}(x_0) = K_i \)

THM: If all \(p_i \)'s are conti. (on \(I \)), then IVP has a unique sol. (on \(I \)).

THM: With all \(p_i \)'s being conti.,

sol. \(\{y_1, \cdots, y_n\} \) are lin. dep. on \(I \)

\[
\Leftrightarrow \quad W(y_1, \cdots, y_n) = \begin{vmatrix} y_1 & \cdots & y_n \\ y_1' & \cdots & y_n' \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix} = 0 \text{ at some } x_0 \in I
\]

\[
\Leftrightarrow \quad W(y_1, \cdots, y_n) \equiv 0 \text{ on } I
\]

\[
y''' - 5y'' + 4y = 0
\]
THM: With all p_i's being conti., the (H) has n lin. indep. sol. (i.e., there is a general solution).

THM: With all p_i's being conti., the general sol. includes all solutions.

Higher order homogeneous linear DE with constant coefficients

$$y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = 0$$

* distinct roots

* multiple roots
Higher order nonhomogeneous linear DE

\[y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = r(x) \]

* undetermined coefficient method:

* variation-of-parameter formula:

\[y_p(x) = y_1 \int \frac{W_1 r}{W} dx + y_2 \int \frac{W_2 r}{W} dx + \cdots + y_n \int \frac{W_n r}{W} dx \]

where \(W = W(y_1, \cdots, y_n) \) and \(W_j \): \(j \)-th column in \(W \) replaced by \[
\begin{bmatrix}
0 \\
\vdots \\
0 \\
1
\end{bmatrix}.
\]

Lesson 16: Case studies

- mass-spring-damper system: forced oscillation
- RLC circuit
- elastic beam
Case study: forced oscillation \((m\ddot{y} + cy' + ky = r)\)

\[
y_p(t) = F_0 \frac{m(\omega_0^2 - \omega^2)}{m^2(\omega_0^2 - \omega^2)^2 + c^2\omega^2} \cos \omega t + F_0 \frac{c\omega}{m^2(\omega_0^2 - \omega^2)^2 + c^2\omega^2} \sin \omega t, \quad y(t) = y_h(t) + y_p(t)
\]
\[
y(t) = y_h(t) + F_0 \frac{m(\omega_0^2 - \omega^2)}{m^2(\omega_0^2 - \omega^2)^2 + c^2 \omega^2} \cos \omega t + F_0 \frac{c \omega}{m^2(\omega_0^2 - \omega^2)^2 + c^2 \omega^2} \sin \omega t
\]

Modeling: RLC circuit
RLC circuit: forced response

Elastic beam
<table>
<thead>
<tr>
<th>Lesson 17: Systems of ODEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ introduction</td>
</tr>
<tr>
<td>▶ existence and uniqueness of solutions to IVP</td>
</tr>
<tr>
<td>▶ linear homogeneous case</td>
</tr>
<tr>
<td>▶ linear homogeneous constant coefficient case</td>
</tr>
</tbody>
</table>
Existence and uniqueness of solutions to IVP

\[y' = f(t, y), \quad y(t_0) = \begin{bmatrix} k_1 \\ \vdots \\ k_n \end{bmatrix} \]

THM: If all \(f_i(t, y) \) and \(\frac{\partial f_i}{\partial y_j}(t, y) \) are conti. on some region of \((t, y_1, y_2, \cdots, y_n)\)-space containing \((t_0, k_1, \cdots, k_n)\), then a sol. \(y(t) \) exists and is unique in some local interval of \(t \) around \(t_0 \).

\[y' = A(t)y + g(t), \quad y(t_0) = \begin{bmatrix} k_1 \\ \vdots \\ k_n \end{bmatrix} \]

THM: If \(A(t) \) and \(g(t) \) are conti. on an interval \(I \), then a sol. \(y(t) \) exists and is unique on the interval \(I \).

Linear homogeneous case

\[y' = A(t)y \]

General sol.: \(y(t) = c_1 y^{(1)}(t) + c_2 y^{(2)}(t) + \cdots + c_n y^{(n)}(t) \)

where \(y^{(i)}(t) \)'s are lin. indep. sol.
Linear homogeneous constant coefficient case

\[y' = Ay \]
Handling complex e.v/e.vectors
Lesson 18: Qualitative properties of systems of ODE

- phase plane and phase portrait
- critical points
- types and stability of critical points

Phase plane and phase portrait
Critical point (= equilibrium)

Example: undamped pendulum
Types of critical points: node

Types of critical points: saddle / center
Types of critical points: spiral / degenerate node

Stability

DEF: stability of a critical point $P_0(=y^*)$:
- all trajectories of $y' = f(y)$ whose initial condition $y(t_0)$ is sufficiently close to P_0 remain close to P_0 for all future time
- for each $\epsilon > 0$, there is $\delta > 0$ such that,

$$|y(t_0) - y^*| < \delta \quad \Rightarrow \quad |y(t) - y^*| < \epsilon, \quad \forall t \geq t_0$$

DEF: asymptotic stability of $P_0 =$ stability + attractivity ($\lim_{t \to \infty} y(t) = y^*$)
Lesson 19: Linearization and nonhomogeneous linear systems of ODE

- linearization
- nonhomogeneous case

Example: second order system
Linearization

\[y' = f(y) \]

Let \(y = 0 \) be a critical point (without loss of generality; WLOG), and be isolated.

\[
\begin{align*}
y_1' &= f_1(y_1, y_2) = f_1(0, 0) + \frac{\partial f_1}{\partial y_1}(0, 0)y_1 + \frac{\partial f_1}{\partial y_2}(0, 0)y_2 + h_1(y_1, y_2) \\
y_2' &= f_2(y_1, y_2) = f_2(0, 0) + \frac{\partial f_2}{\partial y_1}(0, 0)y_1 + \frac{\partial f_2}{\partial y_2}(0, 0)y_2 + h_2(y_1, y_2)
\end{align*}
\]

\[y' = f(y) \quad \Rightarrow \quad y' = Ay = \frac{\partial f}{\partial y} \bigg|_{y=0} y \]

- If no e.v. of \(A \) lies in the imaginary axis, then stability of the critical point of the nonlinear system is determined by \(A \).
 - If \(\text{Re}(\lambda) < 0 \) for all \(\lambda \), it is asymptotically stable.
 - If \(\text{Re}(\lambda) > 0 \) for at least one \(\lambda \), it is unstable.
- If all e.v.‘s are distinct and no e.v. of \(A \) lies in the imaginary axis, then the type of the critical point of the nonlinear system is determined by \(A \).
 - The node, saddle, and spiral are preserved, but center may not be preserved.
Nonhomogeneous linear case

Method of undetermined coefficients (for time-invariant case)
Method of variation of parameters (for time-varying case)

Method of diagonalization (for time-invariant case)
Lesson 20: Series solutions of ODE

- power series method
- Legendre equation

Power series

\[\sum_{m=0}^{\infty} a_m (x - x_0)^m = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots \]
\[\sum_{m=0}^{\infty} a_m(x-x_0)^m = a_0 + a_1(x-x_0) + a_2(x-x_0)^2 + \cdots + a_n(x-x_0)^n + a_{n+1}(x-x_0)^{n+1} + \cdots \]

For a given \(x_1 \),

if \(\lim_{n \to \infty} S_n(x_1) \) exists (or, \(\lim_{n \to \infty} R_n(x_1) = 0 \),

or for any \(\epsilon > 0 \), \(\exists N(\epsilon) \) s.t. \(|R_n(x_1)| < \epsilon \) for all \(n > N(\epsilon) \),

then the series is called “convergent at \(x = x_1 \)” and we write \(S(x_1) = \lim_{n \to \infty} S_n(x_1) \).
Radius of convergence

If

\[R = \frac{1}{\lim_{m \to \infty} \sqrt[|a_m|]} \text{, or } R = \frac{1}{\lim_{m \to \infty} \left| \frac{a_{m+1}}{a_m} \right|} \]

is well-defined, then the series is convergent for \(x \) s.t. \(|x - x_0| < R \).
Power series method

\[y''(x) + p(x)y'(x) + q(x)y(x) = r(x) \]

If \(p, q, \) and \(r \) are analytic at \(x = x_0 \),

then there exists a power series solution around \(x_0 \) (i.e., \(R > 0 \)):

\[y(x) = \sum_{m=0}^{\infty} a_m (x - x_0)^m. \]
Legendre equation

$$(1 - x^2)y'' - 2xy' + n(n+1)y = 0, \quad n : \text{real number}$$
Legendre polynomial (of degree n)
Frobenius method

The DE

\[y'' + \frac{b(x)}{x} y' + \frac{c(x)}{x^2} y = 0 \]

where \(b \) and \(c \) are analytic at \(x = 0 \), has at least one sol. around \(x = 0 \) of the form

\[y(x) = x^r \sum_{m=0}^{\infty} a_m x^m = x^r (a_0 + a_1 x + a_2 x^2 + \cdots). \]
Case 1: distinct roots, not differing by an integer

Case 2: double roots

Case 3: distinct roots differing by an integer

General sol.: $y(x) = c_1 y_1(x) + c_2 y_2(x)$ where

Case 1:

\[
\begin{align*}
y_1(x) &= x^{r_1}(a_0 + a_1 x + \cdots) \\
y_2(x) &= x^{r_2}(A_0 + A_1 x + \cdots)
\end{align*}
\]

Case 2: $r = (1 - b_0)/2$

\[
\begin{align*}
y_1(x) &= x^r(a_0 + a_1 x + \cdots) \\
y_2(x) &= y_1(x) \ln x + x^r(A_1 x + A_2 x^2 + \cdots)
\end{align*}
\]

Case 3: $r_1 > r_2$

\[
\begin{align*}
y_1(x) &= x^{r_1}(a_0 + a_1 x + \cdots) \\
y_2(x) &= ky_1(x) \ln x + x^{r_2}(A_0 + A_1 x + \cdots)
\end{align*}
\]
Example: Euler-Cauchy equation revisited
Example: a simple hypergeometric equation

\[x(x - 1)y'' + (3x - 1)y' + y = 0 \]
Example: another simple hypergeometric equation

\[x(x - 1)y'' - xy' + y = 0 \]
Gamma function

\[\Gamma(\nu) := \int_0^\infty e^{-t} t^{\nu-1} dt \]

has the properties:

1. \(\Gamma(\nu + 1) = \nu \Gamma(\nu) \)
2. \(\Gamma(1) = 1 \)
3. \(\Gamma(n + 1) = n! \)

Bessel’s DE

\[x^2 y'' + xy' + (x^2 - \nu^2)y = 0, \quad \nu \geq 0 \]
Computing $y_1(x)$
Bessel function of the first kind of order \(n \)

\[
J_n(x) = x^n \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+n} m!(n+m)!}
\]

Finding \(y_2(x) \)
Bessel function of the second kind of order ν

$$Y_{\nu}(x) = \frac{1}{\sin \nu \pi} \left[J_{\nu}(x) \cos \nu \pi - J_{-\nu}(x) \right]$$

$$Y_n(x) = \lim_{\nu \to n} Y_{\nu}(x) = \cdots$$
Laplace transform

\[\mathcal{L}\{f\} = \int_0^\infty f(t)e^{-st} dt = F(s) \]

(Property) Linearity: \(\mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\} \)
(Property) s-shifting property: $\mathcal{L}\{e^{at}f(t)\} = F(s-a)$

Transform table: $f(t) \leftrightarrow F(s)$

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$F(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{s}$</td>
</tr>
<tr>
<td>t</td>
<td>$\frac{1}{s^2}$</td>
</tr>
<tr>
<td>t^2</td>
<td>$\frac{2!}{s^3}$</td>
</tr>
<tr>
<td>t^n</td>
<td>$\frac{n!}{s^{n+1}}$, $n = \text{integer}$</td>
</tr>
<tr>
<td>t^a</td>
<td>$\frac{\Gamma(a+1)}{s^{a+1}}$, $a > 0$</td>
</tr>
<tr>
<td>e^{at}</td>
<td>$\frac{1}{s-a}$</td>
</tr>
<tr>
<td>$\cos \omega t$</td>
<td>$\frac{s}{s^2 + \omega^2}$</td>
</tr>
<tr>
<td>$\sin \omega t$</td>
<td>$\frac{s}{s^2 - \omega^2}$</td>
</tr>
<tr>
<td>$\cosh at$</td>
<td>$\frac{a}{s^2 - a^2}$</td>
</tr>
<tr>
<td>$\sinh at$</td>
<td>$\frac{a}{s^2 - a^2}$</td>
</tr>
<tr>
<td>$e^{at} \cos \omega t$</td>
<td>$\frac{s-a}{(s-a)^2 + \omega^2}$</td>
</tr>
<tr>
<td>$e^{at} \sin \omega t$</td>
<td>$\frac{\omega}{(s-a)^2 + \omega^2}$</td>
</tr>
</tbody>
</table>
Existence and uniqueness of Laplace transform

IF $f(t)$ is piecewise continuous on every finite interval in $\{t : t \geq 0\}$, and

$$|f(t)| \leq Me^{kt}, \quad t \geq 0$$

with some M and k,

THEN $\mathcal{L}\{f(t)\}$ exists for all $\text{Re}(s) > k$.

Computing inverse Laplace transform

\[\mathcal{L}^{-1}\{F(s)\} = f(t) = ? \]

* Partial fraction expansion:

Finding coefficients in partial fraction expansion: Heaviside formula

\[Y(s) = \frac{s+1}{s^3 + s^2 - 6s} = \frac{A_1}{s} + \frac{A_2}{s+3} + \frac{A_3}{s-2} \]

\[Y(s) = \frac{s^3 - 4s^2 + 4}{s^2(s-2)(s-1)} = \frac{A_2}{s^2} + \frac{A_1}{s} + \frac{B}{s-2} + \frac{C}{s-1} \]
\[Y(s) = \cdots = \frac{A_3}{(s-1)^3} + \frac{A_2}{(s-1)^2} + \frac{A_1}{s-1} + \frac{B_2}{(s-2)^2} + \frac{B_1}{s-2} \]

\[Y(s) = \frac{20}{(s^2+4)(s^2+2s+2)} + \frac{s-3}{s^2+2s+2} \]

Lesson 24: Laplace transform II

- transform of derivative and integral
- solving linear ODE
- unit step function and t-shifting property
- Dirac’s delta function (impulse)
(Property) Transform of differentiation: $\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0)$

(Property) Transform of integration: $\mathcal{L}\{\int_0^t f(\tau)d\tau\} = \frac{1}{s}F(s)$
Solving IVP of linear ODEs with constant coefficients

\[y'' + ay' + by = r(t), \quad y(0) = K_0, \quad y'(0) = K_1 \]
Unit step function (Heaviside function)

(Property) t-shifting property: $\mathcal{L}\{f(t-a)u(t-a)\} = e^{-as}F(s)$
(Dirac’s) delta function

\[\delta(t) \] is a (generalized) function such that

\[\delta(t) = \begin{cases}
0, & t \neq 0 \\
\infty, & t = 0
\end{cases} \quad \text{and} \quad \int_{-a}^{a} \delta(t) \, dt = 1 \quad \text{for any} \ a > 0
\]

sifting property:

\[\int_{0}^{\infty} g(t) \delta(t - a) \, dt = g(a), \quad g: \text{conti.}, \ a > 0 \]

Lesson 25: Laplace transform III

- convolution
- impulse response
- differentiation and integration of transforms
- solving system of ODEs
(Property) Convolution: \(\mathcal{L}^{-1}\{F(s)G(s)\} = f(t) * g(t) \)

Properties of convolution:

\[
\begin{align*}
 f * g &= g * f \\
 f * (g_1 + g_2) &= f * g_1 + f * g_2 \\
 (f * g) * v &= f * (g * v) \\
 f * 0 &= 0 * f = 0, \quad f * 1 \neq f
\end{align*}
\]
Impulse response
(Property) Differentiation of transform: $\mathcal{L}\{t f(t)\} = -F'(s)$
(Property) Integration of transform: \(\mathcal{L}\{\frac{f(t)}{t}\} = \int_{\hat{s}}^{\infty} F(\hat{s})d\hat{s} \)
Solving system of ODEs