P06. Metabolic and Mitochondrial Disorders

PS06.01 Clinical spectrum of ACAD9 mutations

Martine Rio (Paris, France)

PS06.02 Novel mutations in mitochondrial aminoacyl-tRNA synthetase genes and their phenotypic expression

Elżbieta Ciara (Warsaw, Poland)

PS06.03 A Comparative Assessment of Plasma Peptides, GDF-15 and FGF21, as Biomarkers for Mitochondrial Disease Among Two Biobank Cohorts

Devin Oglesbee (Rochester, United States)

PS06.04 Gene duplication in congenital adrenal hyperplasia (CAH) complicates genetic counselling

Susan Kenrick (Cambridge, United Kingdom)

PS06.05 A very common inborn error of carotene biosynthesis about which little is known

Arthur Beaudet (Houston, United States)

PS06.06 A novel nonsense mutation of the ABHD5 gene causes the early onset of Chanarin-Dorfman syndrome

Sara Missaglia (Milan, Italy)

PS06.08 New genetic insights into the spectrum of disorders of glycosylation: a patient with multiple congenital anomalies

Machteld Oud (Vijmaren, Netherlands)

PS06.09 Distribution of nine most common CYP21A2 point mutations in Macedonian patients with congenital adrenal hyperplasia

Violeta Anastasovska (Skopje, Macedonia, The Former Yugoslav Republic of)

PS06.10 Subjects treated with miglitolat demonstrate stable renal function, reduced left ventricular mass and gastrointestinal symptom improvement in Phase 3 and a long-term extension study of Fabry Disease

Dominique Germain (78180 Montigny, France)

PS06.11 DNA analysis of familial hypercholesterolemia in Slovakia

Dominika Balazsova (Bralistava, Slovakia)

PS06.12 Mutation spectrum in German patients with familial hypercholesterolemia

Ilja Demuth (Berlin, Germany)

PS06.13 Acid ceramidase deficiency: clinical implications of an emerging spectrum and potential therapies

Alexander Solyom (Mainz, Germany)

PS06.14 Development of a cell-based approach to identify small molecules as regulators of FGF23 signalling

Susanne Dierer (Neubrunnberg, Germany)

PS06.15 Four cases of gangliosidosis GM1 with prenatal onset in a consanguineous family

EUSEBII VLAD GOROZUZA (6600 IASI, Romania)

PS06.16 Delineation of a poorly studied type of bone crisis in patients with type 1 Gaucher disease: bone crises of the small bones of the hands and feet

Monika Warz Hubshman (Petah Tikva, Israel)

PS06.17 Association of FTY722 gene functional variant C1858T, HLA-DQ alleles and autoantibodies with Type-1 Diabetes Mellitus in Kuwaiti children

Mohammad Haider (Salaf, Kuwait)

PS06.18 International datashing of Exome sequencing results for the clinical delineation of extremely rare disorders: example of autosomal recessive mutations in FGER

Sophie Nambot (Dijon, France)

PS06.19 Molecular Investigation of Glutaric Aciduria Type 1 in Iran

Babak Shoreshiah nasab (Tehran, Iran, Islamic Republic of)

PS06.20 GENETIC ANALYSIS OF GLYCOCEN STORAGE DISORDERS BY MASSIVE PARALLEL SEQUENCING

Belen Perez (Madrid, Spain)

PS06.21 Homozygosity mapping using SNP microarray as a useful diagnostic tool in consanguineous populations

Lina Basel-Vanagaite (Petah-Tikva, Israel)

PS06.22 Impaired mitochondrial RNA processing in HSD10 disease

Andrea Deutschmann (Innsbruck, Austria)

PS06.23 Pharmacogenetics in channelopathies causing congenital hyperinsulinism in Slovakia

Lucia Valentíniová (Bratislava, Slovakia)

PS06.24 Dual genome investigation in Leber Hereditary Optic Neuropathy

Manuela Grazina (Coimbra, Portugal)

PS06.25 LHON/MELAS overlap syndrome in a girl with complex I deficiency caused by very rare mtDNA mutation m.13046T>C

Hana Kolarova (Prague, Czech Republic)

PS06.26 Solute carrier family 19 (folute transporter) member-1 defect leads to lipid accumulation in hepatocytes

Ana Ananyo (Donostia, Spain)

PS06.27 Identification and characterisation of novel GLA mutations in Fabry disease

Jan Lukas (Rostock, Germany)

PS06.28 Clinical picture in Estonian patients with heteroplastic m.3243A>G mutation in MT-TL1 gene

Eleva Kurvinski (Tallinn, Estonia)

PS06.29 amantadino: a relational database for MAN2B1 allelic variants which compiles genotypes, clinical phenotypes, and biochemical and structural data of mutant MAN2B1 in α-mannosidosidosis.

Hilde Monica Riise Ssendstorm (Tromsø, Norway)

PS06.30 Gut microbiome composition is linked to metabolic improvements induced by dietary changes in Korean adoptees

Eunae Kim (Seoul, Korea, Republic of)

PS06.31 Role of ACD3 protein in the mitochondrial energy metabolism

Markéta Tesařková (Prague 2, Czech Republic)

PS06.32 Identification of causal mutations in three Czech patients with cytochrome c oxidase deficiency and haematological disturbances

Albína Vondráčková (Prague, Czech Republic)

PS06.33 Evaluation of results from a large NGS nuclear mitochondrial panel supports the use of NGS panels in cases of mitochondrial-like clinical features or non-specific presentations

Honey Reddi (New Haven, United States)

PS06.34 Mitochondrial DNA mutation testing: how low can you go?

Farah Khawaja (Edinburgh, United Kingdom)

PS06.35 Exome sequencing in a patient with suspected mitochondrial disease: the truth unveiled.

Samira Ah-Et-Maadem (Nice, France)

PS06.36 Unraveling the genetic cause of mitochondrial disorders by whole exome sequencing

Debby Heulebrekers (Maasbracht, Netherlands)

PS06.37 Particularities of mitochondrial DNA connected with manifestation of muscle tissue hypoxia in congenital myopathies.

Anastasia Voronkova (Moscow, Russian Federation)

PS06.38 Association between seminal protein oxidation and mitochondrial membrane potential of human spermatozoa from infertile men

Salma Dacou (Sfax, Tunisia)

PS06.39 Molecular diagnosis of monogenic diabetes by targeted next-generation sequencing in Slovak MODY patients

Martina Štroková (Braňstava, Slovakia)
Abstract:

Introduction: A growing body of evidence suggests that healthy diet is one of the major factors associated with metabolic health and changes in gut microbiota. Here we conducted a low-salt, high-fiber diet intervention trial on Korean adoptees, to assess alterations in gut microbiome composition in response to changes in diet and the associations with metabolic improvement.

Materials and methods: We developed a modified version of traditional Korean diet (K-DASH), a high-fiber, low-fat, and low-salt diet with a sufficient supply of fruits and nuts. 19 Korean adoptees (mean age: 29.4 years, male: 44.4 %) whose diets are mainly western style were recruited. 16S ribosomal RNA genes were extracted from stool samples at both pre- and post-intervention trial. The V4 region was amplified by PCR and sequenced using Illumina MiSeq platform. QIIME v.1.9.0 was used to estimate taxa from the sequenced reads.

Results: The metabolic profiles, including weight, waist circumference, systolic blood pressure, high-density lipids, and triglyceride levels, showed an improvement, except for fast blood sugar level. The gut microbiome profiles at the phylum level, Firmicutes were decreased, while Bacteroidetes were increased in abundance. The operational taxonomic unit that showed the most significant increase in abundance belonged to the family Leuconostocaceae, which is known to produce acetate and lactate (FDR-corrected p = 0.0028). The change of triglyceride levels correlated with that of abundance of Actinobacteria (Pearson’s correlation coefficient: 0.61, p=0.005).

Conclusions: Our findings suggest that metabolic improvements induced by a short-term changes of diet are mediated through their effects on the gut microbiome.
Gut microbiome composition is linked to metabolic improvements induced by dietary changes in Korean adoptees

Eunae Kim1, Ryeon Chae1, Gajin Jeong2, Gwangpyo Ko3,4, Jung Eun Lee5, So-Yeon Jin6 and Joohon Sung1,4

1Complex Disease and Genome Epidemiology Branch, Department of Epidemiology, School of Public Health, Seoul National University, Seoul, Korea. 2School of Biological Sciences, Seoul National University, Seoul, Korea. 3Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Korea. 4Institute of Health and Environment, Seoul National University, Seoul, Korea. 5Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Korea. 6Department of Traditional Dietary Life Food, Graduate School, Sookmyung Women’s University, Seoul, Korea.

Introduction

A growing body of evidence suggests that healthy diet is one of the major factors associated with metabolic health and changes in gut microbiota. Here we conducted a low-salt, high-fiber diet intervention trial in Korean adoptees, to assess alterations in gut microbiome composition in response to changes in diet and the associations with metabolic improvement.

Methods

- Developed a modified version of traditional Korean diet (K-DASH diet)
- Low-salt, high-fiber, mainly vegetarian diet
- 10-day dietary intervention trial
- Recruited 19 adoptees (Age: 29.4 ± 5.0 years, male: 8 (44%)) born to Koreans, adopted to other countries, and staying in Korea at the recruitment
- At the baseline and after the trial, clinical tests and stool analysis tests performed
- Microbiome analysis
 - 16s ribosomal RNA genes extracted from stool samples
 - The V4 region amplified by PCR and sequenced using the Illumina MiSeq platform
 - Gut microbiome composition profiled using QIIME v.1.9.0

Results

Effects of the dietary intervention on metabolic improvement

<table>
<thead>
<tr>
<th>Pre-intervention</th>
<th>Post-intervention</th>
<th>Δ</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N=19)</td>
<td>(N=19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>66.7 ± 17.5</td>
<td>65.4 ± 17.1</td>
<td>-1.3</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>81.3 ± 13.2</td>
<td>79.0 ± 12.7</td>
<td>-2.3</td>
</tr>
<tr>
<td>HC (cm)</td>
<td>100.6 ± 12.0</td>
<td>99.4 ± 12.2</td>
<td>-1.2</td>
</tr>
<tr>
<td>WHR (%)</td>
<td>80.7 ± 6.7</td>
<td>79.3 ± 6.2</td>
<td>-1.4</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>117.1 ± 13.5</td>
<td>112.5 ± 13.2</td>
<td>-4.6</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>77.9 ± 14.1</td>
<td>76.8 ± 12.4</td>
<td>-1.1</td>
</tr>
<tr>
<td>FBS (mg/dL)</td>
<td>78.1 ± 13.5</td>
<td>80.1 ± 11.4</td>
<td>2.0</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>59.4 ± 16.2</td>
<td>50.3 ± 14.4</td>
<td>-9.1</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>79.5 ± 33.4</td>
<td>66.8 ± 33.7</td>
<td>-12.7</td>
</tr>
</tbody>
</table>

*Paired t-test comparisons of pre- and post-intervention Δ: mean changes, NS: not significant

Changes in microbial compositions and their correlation with changes of measures of metabolic risk factors

At the phylum level, Actinobacteria were significantly reduced by 3.57% (p < 0.01), while none of the rest phylum-level changes were statistically significant. Among correlations between phylum-level changes, changes in Firmicutes and Bacteroidetes showed a strong negative correlation (r = -0.59, p < 0.001), even though the respective changes or the two phyla were not statistically significant (p = 0.39 for Bacteroidetes and p = 0.84 for Firmicutes). The most correlated metabolic changes with Actinobacteria was changes in triglyceride levels, r = 0.61, p < 0.01. Meanwhile, changes in Proteobacteria and weight loss were negatively correlated (r = -0.56, p < 0.05), and for Firmicutes and HDL, changes were positively correlated (r = 0.53, p < 0.05).

Discussion

The ten days of the dietary trial saw overall metabolic improvements and microbial changes across different taxonomical levels, including phylum and genus, in fecal samples of participants. The mean changes of measures of metabolic risk factors indicated that there were impacts of short-term dietary changes on the overall improvements in metabolic health. Such metabolic improvements may have been induced by the gut microbial changes, as gut microbiota are shaped in part by foods consumed and are responsible for metabolic reactions in gut, including digestion of foods, absorption of nutrients and production of nutrients, which confer beneficial health effects to the human host. The disease-associated phylum Actinobacteria, which showed a significant reduction in abundances, were correlated with reduced triglyceride levels. Weight loss and reduced triglyceride levels were correlated with the increase of Rothia, some of whose strains are reported to play an important role in glucose-degrading activities.

However, inconsistent findings were also found for correlations between some of the microbial changes and the corresponding changes in measures of metabolic risk factors. For example, the relative abundance of genus Bifidobacterium, whose members utilize various dietary carbohydrates thus making contributions to health promotions, was significantly increased; however, those alterations correlated with increased TG levels, meaning different bifidobacterial strains may process different carbohydrate degrading abilities. Thus, further investigations into the finding of differences between strains of microorganisms in their metabolic activities and the interplay between nutritional changes, microbial changes and metabolic health will be needed.

Conclusion

Our findings suggest that metabolic improvements induced by short-term, dramatic changes to high-fiber, low-salt diet may be mediated through their effects on the gut microbiome.