Browse

Influence of ovarian hyperstimulation and ovulation induction on the cytoskeletal dynamics and developmental competence of oocytes

Cited 19 time in Web of Science Cited 20 time in Scopus
Authors
Lee, Seung Tae; Han, Ho Jae; Oh, Seo Jin; Lee, Eun Ju; Han, Jae Yong; Lim, Jeong M.
Issue Date
2006
Publisher
Wiley
Citation
Molecular Reproduction and Development, vol.73 no.8, pp. 1022-1033
Keywords
hamstergonadotrophinmicrofilamentcortical granuleembryo development
Abstract
This study was undertaken to determine the effects of gonadotrophin on cytoskeletal dynamics and embryo development and its role in improving the retrieval of developmentally competent oocytes. Female golden hamsters were injected with human chorionic gonadotrophin (hCG; 5-, 7.5- or 15-IU) on the day 4 of estrus, pregnant mare serum gonadotrophin (PMSG; 5-, 7.5- or 15-IU) on the day 1 of estrus, or 15-IU hCG at 56 hr post-15-IU PMSG injection in any cycle except estrus. Increasing the hCG dose decreased not only retrieval rate of 2-cell embryo but development to blastocyst after subsequent in vitro culture. Whereas, although increasing the PMSG dose
induced increasing the number of 2-cell embryo and blastocyst, 15-IU PMSG injection caused retardation of development to blastocyst. No 2-cell embryos were retrieved by injecting both PMSG and hCG. The injections of 15-IU hCG and 7.5- or 15-IU PMSG inhibited the proliferation of trophectodermal and inner cell mass cells, respectively. Gonadotrophin injection didn’t influence microtubular spindle formation, but 5- or 15-IU hCG, 15-IU PMSG, or PMSG and hCG injections induced aberrant cortical granule (CG) and microfilament distribution. After 15-IU hCG or PMSG and hCG injections, fewer oocytes had enriched cortical actin domains, and the expression of a-, band g-actin genes was greatly increased. In conclusion, a high dose of gonadotrophins alters the microfilament and CG distribution, which in turn reduces the developmental competence of oocytes. Injecting a reduced dose of PMSG to initiate ovarian hyperstimulation without triggering ovulation contributes to the efficient retrieval of developmentally competent oocytes.
ISSN
1040-452X
Language
English
URI
http://hdl.handle.net/10371/100226
DOI
https://doi.org/10.1002/mrd.20500
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Agriculture and Life Sciences (농업생명과학대학)Dept. of Food and Animal Biotechnology (식품·동물생명공학부)Journal Papers (저널논문_식품·동물생명공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse