Publications

Detailed Information

A LPDDR4 MEMORY CONTROLLER DESIGN WITH EYE CENTER DETECTION ALGORITHM

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

홍기문

Advisor
김수환
Major
공과대학 전기·컴퓨터공학부
Issue Date
2016-02
Publisher
서울대학교 대학원
Keywords
LPDDR4mobile memorymemory controllermemory interfacetransceivertraining algorithmeye center detection
Description
학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 김수환.
Abstract
The demand for higher bandwidth with reduced power consumption in mobile memory is increasing. In this thesis, architecture of the LPDDR4 memory controller, operated with a LPDDR4 memory, is proposed and designed, and efficient training algorithm, which is appropriate for this architecture, is proposed for memory training and verification.
The operation speed range of the LPDDR4 memory specification is from 533Mbps to 4266Mbps, and the LPDDR4 memory controller is designed to support that range of the LPDDR4 memory. The phase-locked loop in the LPDDR4 memory controller is designed to operate between 1333MHz and 2133MHz. To cover the range of the LPDDR4 memory, the selectable frequency divider is used to provide operation clock. The output frequency of the phase-locked loop with divider is from 266MHz to 2133MHz. The delay-locked loop in the LPDDR4 memory controller is designed to operate between 266MHz and 2133MHz with 180˚ phase locking. The delay-locked loop is used each training operation, which is command training, data read and write training. To complete training in each training stage, eye center detection algorithm is used. The circuits for the proposed eye center detection algorithm such as delay line, phase interpolator and reference generator are designed and validated. The proposed 1x2y3x eye center detection algorithm is 23 times faster than conventional two-dimensional eye center detection algorithm and it can be implemented simply.
Using 65nm CMOS process, the proposed LPDDR4 memory controller occupies 12mm2. The verification of the LPDDR4 memory controller is performed with commodity LPDDR4 memory. The verification of all training sequence, which is power on, initializing, boot up, command training, write leveling, read training, write training, is performed in this environment. The low voltage swing terminated logic driver and other several functions, including write leveling and data transmission, are verified at 4266Mbps and the entire LPDDR4 memory controller operations from 566Mbps to 1600Mbps are verified. The proposed eye center detection algorithm is verified from 566Mbps to 2843Mbps.
Language
Korean
URI
https://hdl.handle.net/10371/119138
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share