Publications

Detailed Information

Study on hydrodeoxygenation reaction of bio-oil in the presence of activated carbon supported Pd, Ru and Pt catalysts

DC Field Value Language
dc.contributor.advisor최준원-
dc.contributor.author오신영-
dc.date.accessioned2017-07-14T06:35:24Z-
dc.date.available2017-07-14T06:35:24Z-
dc.date.issued2014-02-
dc.identifier.other000000017080-
dc.identifier.urihttps://hdl.handle.net/10371/125741-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 산림과학부(환경재료과학전공), 2014. 2. 최준원.-
dc.description.abstract본 연구에서는 급속열분해를 통해 생성된 바이오오일의 수송용 연료화를 위한 개질 방법으로 수첨탈산소 공정을 수행하였다. 급속열분해를 통해 얻은 억새 바이오오일을 세 종류의 금속 촉매(Pd/C, Ru/C, Pt/C)를 이용하여 250-350°C, 30-60분 동안 30 bar의 수소를 주입한 후 개질 공정을 진행하였다. 수첨탈산소 개질 공정 결과 가스와 탄 및 유기물로 이루어진 개질된 heavy oil과 용매 및 물로 구성된 light oil로 구분되는 액상의 오일이 생성되었다.
모든 heavy oil의 물리적, 화학적 특성은 바이오오일과 비교하여 개선되었으며 촉매 종류 및 반응 조건에 따라 heavy oil을 비롯한 생성물의 수율에 차이가 나타났다. 바이오오일의 수분 함량이 17.7%에서 0.1-0.8% (Pd/C), 0.5-8.2% (Ru/C), 0.5-4.0 (Pt/C)로 감소하였으며, 발열량은 17.3 MJ/kg에서 22.8-25.9 MJ/kg (Pd/C), 23.3-26.1 MJ/kg (Ru/C), 20.7-27.8 MJ/kg (Pt/C)로 증가하였다. GC/MS 분석을 통해 확인된 약 33가지의 저분자량 화합물을 작용기에 따라 분류하였다. 이 중 불안정한 물질인 산(2-hydroxy-butanoic acid), 당(levoglucosan), 알코올(butaneidal) 및 알데하이드류(furfural)는 수첨탈산소 반응을 거치며 안정한 에스테르, 페놀류 물질로 다양하게 변화되었다. 또한 바이오오일의 구성성분 중 안정성을 저해하는 열분해 리그닌(22.4%)은 수첨탈산소 반응을 통해 바이오오일 대비 8.8-17.7% (Pd/C), 7.8-9.0% (Ru/C), 3.5-6.5% (Pt/C)로 감소하였다. 열분해 리그닌과 비교하여 heavy oil 내 페놀성 수산기와 메톡실기가 각각 감소하였다. Heavy oil의 물성과 화학 조성의 변화 및 heavy oil 내 존재하는 페놀성중합체의 수율 및 특성 변화로부터 수첨탈산소 반응을 통해 바이오오일의 안정성이 향상된 것을 확인하였다.
수첨탈산소 촉매의 재사용 횟수가 증가함에 따라 각 촉매가 불활성화 되었으며 촉매 종류에 따라 각각 코크(coke) 침적(Pd/C, Ru/C, Pt/C), 황에 의한 피독(Ru/C, Pt/C) 및 금속과 메틸기의 결합으로 인한 활성점의 파괴(Pd/C) 등 다양한 불활성화 반응이 진행되었다.
-
dc.description.tableofcontents1. Introduction∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1
1.1. Biofuel ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1
1.2. Biomass to liquid (BTL) conversion ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3
1.3. Bio-oil upgrading technologies ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5
1.4. Objectives ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6

2. Literature review∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8
2.1. Fast pyrolysis process for bio-oil ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8
2.2. Properties of bio-oil ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9
2.2.1. Physicochemical properties of bio-oil ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9
2.2.2. Chemical composition of bio-oil ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10
2.2.3. Disadvantages of bio-oil as a transportation fuel ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10
2.3. Upgrading technology ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12
2.4. Hydrodeoxygenation ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13
2.5. Catalyst deactivation ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙15

3. Materials and Methods∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16
3.1. Materials ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16
3.2. Hydrodeoxygenation of bio-oil with noble metal catalysts ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18
3.3. Characterization of heavy oil ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙22
3.3.1. Physicochemical properties ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙22
3.3.2. Qualification of low molecular compounds (micromolecules) in heavy oil ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙23
3.4. Macromolecular lignin fragments from heavy oil ∙∙∙∙∙∙∙∙∙∙∙∙∙24
3.4.1. Extraction of lignin fragments ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24
3.4.2. Functional groups and elemental analysis of macromolecules ∙∙∙∙24
3.4.3. Gel permeation chromatography ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙25
3.4.4. Thermal and spectroscopic analysis of macromolecules ∙∙∙∙∙25
3.5. Reuse of HDO catalysts ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙26

4. Results and Discussion∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙27
4.1. Bio-oil modifications during HDO with Pd/C catalyst ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙27
4.1.1. Mass balance of hydrodeoxygenation products ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙27
4.1.1.1. Influence of reaction temperature ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙27
4.1.1.2. Influence of reaction time ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙28
4.1.2. Characterization of heavy oil ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙30
4.1.2.1. Physicochemical properties ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙30
4.1.2.2. Qualification of low molecular compounds and plausible modifications ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙34
4.1.3. Macromolecules transition from bio-oil to heavy oil ∙∙∙∙∙∙∙∙∙∙41
4.1.3.1. Physicochemical properties ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙41
4.1.3.2. Structural transition of lignin fragment during HDO ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙44
4.2. Bio-oil modifications during HDO with Ru/C catalyst ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙50
4.2.1. Mass balance of hydrodeoxygenation products ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙50
4.2.1.1. Influence of reaction temperature ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙50
4.2.1.2. Influence of reaction time ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙51
4.2.2. Characterization of heavy oil ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙53
4.2.2.1. Physicochemical properties ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙53
4.2.2.2. Qualification and modification of low molecular compounds ∙∙57
4.2.3. Macromolecules transition from bio-oil to heavy oil ∙∙∙∙∙∙∙∙62
4.2.3.1. Physicochemical properties ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙62
4.2.3.2. Structural transition of lignin fragment during HDO ∙∙∙∙∙∙∙∙64
4.3. Bio-oil modifications during HDO with Pt/C catalyst ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙67
4.3.1. Mass balance of hydrodeoxygenation products ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙67
4.3.1.1. Influence of reaction temperature ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙67
4.3.1.2. Influence of reaction time ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙67
4.3.2. Characterization of heavy oil ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙70
4.3.2.1. Physicochemical properties ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙70
4.3.2.2. Qualification and modification of low molecular compounds ∙∙74
4.3.3. Macromolecular transitions from bio-oil to heavy oil ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙79
4.3.3.1. Physicochemical properties ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙79
4.4. Recovery and reuse of noble metal catalysts for HDO reactions ∙∙∙∙∙∙∙∙∙81
4.4.1. Mass balance of HDO products with reused catalysts and heavy oil properties ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙81
4.4.2. Deactivation degree of each noble metal catalyst with reuse ∙∙∙∙∙∙∙∙∙∙84

5. Conclusion ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙88

6. References ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙90
-
dc.formatapplication/pdf-
dc.format.extent2637219 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoko-
dc.publisher서울대학교 대학원-
dc.subjectMiscanthus-
dc.subjectbio-oil-
dc.subjecthydrodeoxygenation-
dc.subjectpyrolytic lignin-
dc.subjectphenol polymer-
dc.subjectstability-
dc.subjectnoble metal catalyst-
dc.subject.ddc634-
dc.titleStudy on hydrodeoxygenation reaction of bio-oil in the presence of activated carbon supported Pd, Ru and Pt catalysts-
dc.typeThesis-
dc.description.degreeMaster-
dc.citation.pagesIX, 100-
dc.contributor.affiliation농업생명과학대학 산림과학부(환경재료과학전공)-
dc.date.awarded2014-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share