Browse

Numerical Solutions for Non-linear Parabolic Systems on Predator-Prey Problems

DC Field Value Language
dc.contributor.advisor정상권-
dc.contributor.author이재승-
dc.date.accessioned2017-07-19T02:32:24Z-
dc.date.available2017-07-19T02:32:24Z-
dc.date.issued2015-02-
dc.identifier.other000000026344-
dc.identifier.urihttp://hdl.handle.net/10371/127603-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 수학교육과, 2015. 2. 정상권.-
dc.description.abstractReaction-diffusion systems have been extensively used in physics, biology, chemistry, ecology, etc. We will consider a diffusive predator-prey model with nonlinear reaction terms. Because of nonlinearity of the problem, it is the only way to find numerical solutions. An implicit finite difference scheme is considered and numerical computations are given in order to support theoretical background.-
dc.description.tableofcontentsAbstract i
Chapter 1 Introduction 1
Chapter 2 Existence of a classical solution 3
Chapter 3 Asymptotic stability 5
Chapter 4 Numerical approximate solutions 11
Chapter 5 Computational results 18
Chapter 6 Conclusion 30
Bibliography 31
초록 33
-
dc.formatapplication/pdf-
dc.format.extent3254006 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectPredator-Prey model-
dc.subject.ddc510-
dc.titleNumerical Solutions for Non-linear Parabolic Systems on Predator-Prey Problems-
dc.typeThesis-
dc.contributor.AlternativeAuthorLee Jaeseung-
dc.description.degreeMaster-
dc.citation.pagesii, 33-
dc.contributor.affiliation사범대학 수학교육과-
dc.date.awarded2015-02-
Appears in Collections:
College of Education (사범대학)Dept. of Mathematics Education (수학교육과)Theses (Master's Degree_수학교육과)
Files in This Item:
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse