Publications

Detailed Information

Quantum Simulation of Inflationary Cosmology: Probing Analogue Trans-Planckian Spectra in Dipolar Bose-Einstein Condensates : 인플레이션 우주론의 양자역학적 시뮬레이션: 쌍극자 보스-아인슈타인 응축체 내에서의 유추 초 플랑크 스펙트럼의 탐구

DC Field Value Language
dc.contributor.advisorUwe R. Fischer-
dc.contributor.author최석영-
dc.date.accessioned2018-11-12T00:59:31Z-
dc.date.available2018-11-12T00:59:31Z-
dc.date.issued2018-08-
dc.identifier.other000000151864-
dc.identifier.urihttps://hdl.handle.net/10371/143242-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 자연과학대학 물리·천문학부(물리학전공), 2018. 8. Uwe R. Fischer.-
dc.description.abstractThis study concerns the emergence of effective curved spacetime in the quasi two dimensional dipolar Bose-Einstein condensates, in which Bogoliubov quasiparticle excitation spectrum displays, at sufficiently large gas density, a deep roton minimum due to the spatially anisotropic behavior of the dipolar two-body potential.



The study can generally be divided into two parts. Firstly, an analogue de Sitter cosmos in an expanding dipolar condensate is considered.

It is demonstrated that a hallmark signature of inflationary cosmology, the scale invariance of the power spectrum (SIPS) of inflaton field correlations, experiences strong modifications when, at the initial stage of expansion, the excitation spectrum displays roton minimum.

This exemplifies that dipolar quantum gases furnish a viable laboratory tool to experimentally investigate, with well-defined and controllable initial conditions, whether excitation spectra deviating from Lorentz invariance at trans-Planckian momenta violate standard predictions of inflationary cosmology.



Secondly, it is investigated whether a rapid quench, performed on the speed of sound of excitations propagating on the condensate background, leads to the dynamical Casimir effect (DCE), which can be characterized by measuring the density-density correlation function.

It is shown, for both zero and finite initial temperatures, that the continuous-variable bipartite quantum state of quasiparticle pairs with opposite momenta, resulting from the quench, displays an enhanced potential for the presence of entanglement, when compared to a gas with repulsive contact interactions only.

Entangled quasiparticle pairs contain momenta close to the roton, and hence the quantum correlation significantly increases in the presence of deep roton minimum.
-
dc.description.tableofcontentsAbstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Time Line of Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . 5

2.2 Off-Diagonal Long-Range Order . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Definition of Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . 9

2.4 Uniform and Isotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Bogoliubov Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

III. Description of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Lagrangian Density of the System . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Dimensional Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Scaling Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

IV. Analyzing the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Zeroth-Order Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 First-Order Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

V. Gravitational Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Effective FRW Universe in the Condensate . . . . . . . . . . . . . . . . . . 27

5.2 Ideal de Sitter Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

VI. Real Space Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Definition of Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Gaussian Random Field Method . . . . . . . . . . . . . . . . . . . . . . . 37

VII. Incorporating Trans-Planckian Deformation . . . . . . . . . . . . . . . . . 39

7.1 Generalized Klein-Gordon Equation . . . . . . . . . . . . . . . . . . . . . 39

7.2 An Exactly Solvable Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

VIII. Connection to Lab Frame Variables . . . . . . . . . . . . . . . . . . . . . . 47

8.1 Bogoliubov Transformation to Minkowski Vacuum at Late Times . . . . . 47

8.2 Relation to Lab-Frame Bogoliubov Excitations . . . . . . . . . . . . . . . 49

8.3 Translation into Lab-Frame Variables . . . . . . . . . . . . . . . . . . . . 53

IX. Pair Creation of Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.1 A Practical Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.2 Bogoliubov-de Gennes Equation . . . . . . . . . . . . . . . . . . . . . . . 56

9.3 Mode Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

X. Measuring Quantum Correlation . . . . . . . . . . . . . . . . . . . . . . . . 63

10.1 Density-Density Correlation Function . . . . . . . . . . . . . . . . . . . . 63

10.2 Criteria for Nonseparability and Steerability . . . . . . . . . . . . . . . . . 66

XI. Analogue Dynamical Casimir Effect . . . . . . . . . . . . . . . . . . . . . . 69

11.1 Rapid Changes of Sound Speed . . . . . . . . . . . . . . . . . . . . . . . . 69

11.2 Quench Production of Entanglement . . . . . . . . . . . . . . . . . . . . . 72

XII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

I. Cosmological Models of General Relativity . . . . . . . . . . . . . . . . . . 81

A.1 Conceptual Introduction to General Relativity . . . . . . . . . . . . . . . . 81

A.2 Tensors and Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.3 Maximally Symmetric Spacetime . . . . . . . . . . . . . . . . . . . . . . . 95

A.4 de Sitter Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.5 FRW Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

II. Cosmological Particle Production . . . . . . . . . . . . . . . . . . . . . . . 119

B.1 Scalar Field Residing on a Flat FRW Universe . . . . . . . . . . . . . . . . 119

B.2 Mode Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.3 Canonical Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.4 Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 124

III. Quantum Many-Body Physics . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.1 Fock Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.2 Creation and Annihilation Operators . . . . . . . . . . . . . . . . . . . . . 132

C.3 One-Body and Two-Body Operators . . . . . . . . . . . . . . . . . . . . . 135

C.4 Ordering of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.5 Field Operators and Wavefunctions . . . . . . . . . . . . . . . . . . . . . . 144

C.6 Density Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Abstract in Korean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subject.ddc523.01-
dc.titleQuantum Simulation of Inflationary Cosmology: Probing Analogue Trans-Planckian Spectra in Dipolar Bose-Einstein Condensates-
dc.title.alternative인플레이션 우주론의 양자역학적 시뮬레이션: 쌍극자 보스-아인슈타인 응축체 내에서의 유추 초 플랑크 스펙트럼의 탐구-
dc.typeThesis-
dc.contributor.AlternativeAuthorSeok-Yeong Choe-
dc.description.degreeDoctor-
dc.contributor.affiliation자연과학대학 물리·천문학부(물리학전공)-
dc.date.awarded2018-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share