Role of Type I interferon in infection of Mycobacterium abscessus to macrophages
대식세포에서 Mycobacterium abscessus 감염에 대한 제1형 인터페론 역할에 관한 연구

Cited 0 time in Web of Science Cited 0 time in Scopus
의과대학 의과학과
Issue Date
서울대학교 대학원
학위논문 (박사)-- 서울대학교 대학원 : 의과대학 의과학과, 2019. 2. 김범준.
Mycobacterium abscessus (MAB)는 비결핵 항산균 (nontuberculous mycobacteria, NTM) 중 신속 발육 마이코박테리아(rapidly grow mycobacteria, RGM)에 속하는 인체 감염 병원균으로서 전 세계적으로 감염과 질환이 증가함에 따라 그의 임상적 중요성이 높아지고 있다. MAB는 집락형에 따라 높은 glycopeptidolipid(GPL) 함량을 가지는 활면 집락형(smooth, S)과 낮은 수준의 GPL을 생산하는 조면 집락형(rough, R)으로 나뉘며, 조면 집락형의 병원성이 활면 집락형에 비해 높다고 알려져 있다. 그러나 MAB의 집락형 차이에 따른 병원성 인자 및 기전은 잘 알려져 있지 않다. 이에 본 연구에서는 제1형 인터페론을 중심으로 한 MAB의 병원성 기전을 설명 하고자 하였다.

MAB 조면 집락형 균주는 액틴 의존적인 식세포작용을 통해 세포 안으로 유입된 후, 파고좀 내에서 능동적인 균 증식을 유도 하였다. 결핵균과는 다른 방법으로 파고좀 파열(phagosomal rupture)을 이끌어 두 가지 기전으로 제1형 인터페론을 생산함을 확인 하였다. 활면 집락형 균주와 달리 조면 집락형 균주는 1)파고좀에서 세포질로 탈출(phagosomal escape) 후, 이로 인해 세균 DNA가 세포질에 유입되는 기전과 2)더 활발히 미토콘드리아 스트레스를 유도하여 산화된 미토콘드리아 DNA를 세포질로 방출시키는 기전을 통해 cGAS-STING 수용체 인지(recognition)를 유도, 결과적으로 내제적 제1형 인터페론의 생산을 유도한다.

조면 집락형 균주는 제1형 인터페론 의존적으로, 감염된 대식세포의 세포사멸을 유도하고, 세포사멸을 매개로 한 세포 간 전파를 통하여 세균증식을 위한 새로운 서식처(niche)를 제공함으로써 세균의 병원성을 향상 시킬 수 있다. 뿐만 아니라 산화된 미토콘드리아 DNA는 NLRP3 인플라마좀 활성화를 증가시켜 염증성 사이토카인의 일종인 인터루킨-1β(IL-1β)의 생산을 유도함으로써 제1형 인터페론과 상승적으로 조면 집락형 균주의 병원성을 증가시킬 수 있다는 것을 확인하였다. 또한 조면 집락형 균주의 제1형 인터페론 생산의 상위 신호전달 체계인 액틴 의존성 식세포작용 및 미코콘드리아 스트레스를 억제함으로써 대식세포에서의 세균의 증식이 줄어듦을 확인하였다.

따라서, 본 연구 결과는 제1형 인터페론을 중심으로 조면 집락형 균주가 활면 집락형 균주에 비해 높은 병원성을 지니는 기전을 설명하였고, 이를 토대로 조면 집락형 균주와 활면 집락형 균주 변이 간의 병원성 차이에 대한 새로운 이해 및 MAB 감염 치료 전략을 제시하였다.
Mycobacterium abscessus complex (MAB) is a rapidly growing Mycobacterium (RGM), whose clinical significance as an emerging human pathogen has been increasing worldwide. It has two types of colony morphology, a smooth (S) type producing high glycopeptidolipid (GPL) content, and a rough (R) type which produces low levels of GPLs and is associated with increased virulence. The mechanism responsible for their difference in virulence is poorly known, while these pathogenic mechanisms should be proved at the molecular level.

In this study, I demonstrated that phagosomal escape of rough MAB-R strains in macrophage after phagosomal rupture can lead to Type I interferon (IFN) production. In addition, MAB-R strains enhance Type I IFN production and NLRP3 activation via mitochondrial stress mediated by release of oxidized mitochondrial DNA into cytosol.

By ultrastructural examination of murine macrophages infected with MAB strains, I found that MAB-R strains can replicate more actively in the macrophage phagosome than the S variants and that they could escape into cytosol subsequent to phagosomal rupture. The cytosolic access of MAB-R strains following phagosomal rupture brings about increased Type I IFN production via cGAS-STING signaling and cell death, which results in their cell-to-cell spreading. This behavior can provide an additional niche for the intracellular survival of MAB-R strains. In addition, I found that their enhancement of cell death mediated by cell spreading is dependent on Type I IFN signaling through comparison of wild-type and IFNAR1 knockout mice. This result indicated that a transition of MAB-S strains into MAB-R variants increases their virulence via elevated Type I IFN production, which leads to enhancing their survival in infected macrophage via cell death mediated cell-to-cell spreading.

Next, I sought to explore experimentally that mitochondria stress caused by bacterial phagosomal rupture could contribute into enhanced Type I IFN secretion and NLRP3 inflammasome activation by MAB-R strains.

I showed that MAB-R strains lead to more mitochondrial stress and more release of oxidized mtDNA into cytosol compared to MAB-S strains in murine macrophage. It also leads to the enhanced NLRP3 inflammasome mediated by IL-1β and IRF3 dependent Type I IFN secretions in the infection of MAB-R strains. Treatment of infected macrophages with a mitochondria-specific antioxidant, mito-TEMPO reduced cytosolic oxidized mtDNA and inhibited both innate cytokines, IL-1β and Type I IFN by MAB-R strains, suggesting a pivotal role of mitochondrial stress in their innate cytokine inductions by MAB-R strains.

Finally, I found that treatment of cytochalasin D, which interferes with actin mediated bacterial phagocytosis, lead to inhibition of mitochondrial stress mediated by Type I IFN and IL-1β productions, suggesting a crucial role in actin dependent phagocytosis in MAB-R mediated mitochondrial stress.

Taken together, my study suggests that a transition of MAB-S strains into MAB-R variants increases their virulence via enhanced Type I IFN production, which leads to enhanced bacterial survival in infected macrophage via cell death mediated cell-to-cell spreading. Furthermore, MAB-R strains can lead to enhanced Type I IFN and IL-1β production via mitochondrial stress induction by actin dependent bacterial phagocytosis. This study further proposes that not only a novel insight into the difference in virulence between MAB-R and -S variants but also hints about their treatment strategy.
Files in This Item:
Appears in Collections:
College of Medicine/School of Medicine (의과대학/대학원)Dept. of Biomedical Sciences (대학원 의과학과)Theses (Ph.D. / Sc.D._의과학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.