Browse

Unified Modeling of the Si/SiO2 Interface Trap Generation and Recovery under the NBTI and FN stress
NBTI 와 FN 스트레스에 의한 Si/SiO2 계면 트랩의 생성 및 복원에 대한 통합적 모델링

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
최성욱
Advisor
박영준
Major
전기·컴퓨터공학부
Issue Date
2012-02
Publisher
서울대학교 대학원
Abstract
Understanding and modeling of the device degradations under gate stress such as the NBTI and FN stress are important for the reliability optimization of the logic device, the memory cell and its driver circuits. In the FN stress regime, the device is degraded by the anode hole injection (AHI) mechanism, where the interface traps as well as the oxide traps are generated by the hot holes. In case of the NBTI, the physical understanding and modeling of the relaxation phase have been relatively well studied even though there are controversies in the modeling of the surface reaction between the hydrogen and Si dangling bond. Also, some authors suggest that the underlying physics on the interface trap generation of NBTI and FN may be same while others not.
In this context, we conduct a comparison study on the recovery of the interface traps in the relaxation phases after the FN and NBTI stress using both the experiments and the numerical simulation. In this way, the physical insight and modeling on the surface reaction can be obtained which will lead us to the practical reliability prediction about the degradation on threshold voltage (Vth), drain current (Id) and subthreshold swing (SS), etc.
For the comparison study of the NBTI and FN stress, the existing models on the interface trap generation under the NBTI and FN stress are reviewed. From the literature, one can find that the generation and recovery models of the interface trap are highly controversial under the NBTI and FN conditions. In order to resolve the controversies and propose the unified model for the NBTI and FN stress, the experiments on the relaxation phases under both stress conditions are conducted. For the first time, we find the universality in the FN relaxation phase as same as the case of NBTI. The universality of the FN and NBTI stress infers that the underlying physics is similar between the NBTI and FN stress and thus the unification of the NBTI and FN model is possible.
The conventional model of the NBTI relaxation, the reaction diffusion model, cannot completely explain our experimental results. In this dissertation, we developed a new simulation method to improve the conventional reaction diffusion model in its 1-dimentional analytic form. By adopting the Monte-Carlo particle method, we describe the Brownian motion of the hydrogen particle in the 3-dimentional space. After applying the Monte-Carlo method to the reaction diffusion model, the simulation results well explain the experimental parameters. Moreover, from the simulation study, the effects of the (hydrogen) capture cross-section of the unsaturated Si bond at the interface and the density of Si-H bond on the NBTI characteristics are investigated for the first time. The simulation framework proposed in this dissertation is expected to be useful in predicting the measurement results of both the NBTI and FN stress.
MOSFET 소자의 게이트에 가해지는 스트레스인 NBTI와 FN 현상을 이해하고 모델링하는 것은 로직 소자나 메모리 셀과 그 driver 회로의 신뢰성 열화 현상을 이해하는 것에 있어서 매우 중요하다. FN 스트레스 영역에서는 Anode Hole Injection (AHI) 현상을 통해 계면트랩과 산화막 트랩이 발생해 소자가 열화가 된다. NBTI 영역에서는 그 원인이 되는 Si-H 결합의 해리 반응을 모델링 하는 것에 있어서 상반된 주장이 아직까지도 존재한다. 또한 NBTI와 FN에 의해서 계면 트랩이 발생하는 메커니즘이 동일한지에 대해서도 상반된 주장이 존재하고 있다.
이러한 맥락에서, 우리는 FN과 NBTI 현상을 비교하는 연구를 진행하였다. 이러한 비교를 통하여 소자의 문턱전압값, 드레인 전류, Subthreshold swing의 열화를 예측할 수 있는 물리적 통찰을 얻을 수 있고 표면 반응에 대한 모델링을 정확하게 할 수 있을 것이다.
FN과 NBTI 비교 연구를 위하여 두 현상의 휴식 단계(relaxation phase)에 대한 비교 측정을 수행하였다. 이는 스트레스 단계(stress phase)에서는 조건이 다르지만 휴식 단계에서는 바이어스 조건이 둘 다 같기 때문이다. 측정 결과 NBTI에서 알려진 보편적(universal) 휴식 특성이 FN 휴식 단계에도 동일하게 적용할 수 있음을 관찰하였다.
기존의 NBTI 모델인 반응-확산(RD) 모델을 통해 살펴 보았을 때에 이러한 보편적 휴식 특성이 성립한다는 것은 FN과 NBTI 모두 수소가 산화막에서 확산함에 의해 제한되는 반응임을 살펴볼 수가 있었다. 하지만 휴식 단계의 결과는 반응-확산 모델을 통해 예측한 것과 정량적으로는 차이가 나게 된다. 이러한 현상을 해결하기 위해서 우리는 기존의 일차원 해석적 모양을 가지는 반응-확산 모델을 개선할 수 있는 새로운 시뮬레이션 방법을 제안하였다. 이것을 위하여Monte-Carlo 방법을 사용하여 수소 입자 각각의 브라운 운동 (Brownian motion)을 삼차원 적으로 다루었고 Si-H 결합의 해리 반응 또한 Monte-Carlo 방법을 사용하여 확률적으로 구할 수 있는 시뮬레이션 기반을 구축하였다. Monte-Carlo 방법을 사용한 결과는 측정 결과를 잘 설명할 수 있는 영역 내에 있음을 알 수 있었다. 뿐만 아니라 capture cross-section과 Si-H 결합의 농도 또한 휴식 단계의 파라미터에 중요한 영향을 준다는 것을 처음으로 밝혀낼 수 있었다. 이 연구를 통하여 개발한 삼차원 수소 확산-반응 시뮬레이터는 차세대 소자의 신뢰성 열화에 대한 통계적 분석을 하는데 있어서 중요하게 쓰일 수 있을 것이다.
Language
eng
URI
http://hdl.handle.net/10371/156626

http://dcollection.snu.ac.kr:80/jsp/common/DcLoOrgPer.jsp?sItemId=000000000475
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Electrical and Computer Engineering (전기·정보공학부)Theses (Ph.D. / Sc.D._전기·정보공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse