Publications

Detailed Information

Li2O-B2O3-GeO2 glass as a high performance anode material for rechargeable lithium-ion batteries

Cited 23 time in Web of Science Cited 25 time in Scopus
Authors

Choi, Seung Ho; Lee, Seung Jong; Kim, Hye Jin; Park, Seung Bin; Choi, Jang Wook

Issue Date
2018-04
Publisher
Royal Society of Chemistry
Citation
Journal of Materials Chemistry A, Vol.6 No.16, pp.6860-6866
Abstract
Group IV metal oxides, such as GeO2, SiOx, and SnO2, have been considered promising anode materials of lithium-ion batteries (LIBs) because of their significantly higher specific capacities than those of their conventional graphite counterparts. These metal oxides, however, suffer from immense volume variations and aggregation of active domains, resulting in inferior cycle lives of batteries. Herein, we report lithium-ion conducting Li2O-2B(2)O(3)-2GeO(2) glass as a new LIB anode material by employing fast spray pyrolysis (residence time similar to 10 s). Spray pyrolysis allows the formation of spherical particles with a narrow diameter range and homogeneous mixing of the individual glass components. Taking advantage of lithium-ion conductivity through inter-domain pathways as well as the Li2O-2B(2)O(3) glass phase that alleviates the volume expansion and aggregation of GeO2 active phases, the LBGO glass electrode exhibited a high reversible capacity of 881.1 mA h g(-1) along with 92.7% capacity retention after 150 cycles when measured at 1.0 A g(-1). The present study opens a new avenue for developing high capacity LIB electrode materials, that is, lithium-ion conducting glass materials that can avoid volume expansion and the aggregation of active domains via buffering glass matrices.
ISSN
2050-7488
URI
https://hdl.handle.net/10371/164594
DOI
https://doi.org/10.1039/c8ta00934a
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share