Browse

The role of substituents in determining the redox potential of organic electrode materials in Li and Na rechargeable batteries: electronic effects vs. substituent-Li/Na ionic interaction

Cited 9 time in Web of Science Cited 8 time in Scopus
Authors
Lee, Sechan; Kwon, Ji Eon; Hong, Jihyun; Park, Soo Young; Kang, Kisuk
Issue Date
2019-05
Citation
Journal of Materials Chemistry A, Vol.7 No.18, pp.11438-11443
Abstract
Rechargeable batteries based on organic electrode materials are an attractive energy storage alternative in terms of cost efficiency and sustainability. Feasible chemical modifications of organic materials also offer versatile and easily tunable electrochemical properties to use them as electrodes in battery systems. Herein, we discuss the effect of substituting functional groups on the redox potential of Li- and Na-ion cells using two novel disodium terephthalate (Na2TP) derivatives. It is shown that the substitution of electron donating functional groups generally lowers the discharge voltages of organic anode materials by shifting the lowest unoccupied molecular orbital (LUMO) energy, which is consistent with prior knowledge. In contrast, the same substitution is shown to also increase the voltage owing to specific ion interactions with the substituents. The strong binding interaction between the intercalating ion (Li+) and methoxy substituents significantly lowers the free energy of the discharged products, resulting in elevation of the redox potential despite the high LUMO level of the host molecule. These findings suggest the competition between electronic effects and the ionic interaction as the governing factor determining the redox voltages, providing an important guideline to fine-tune the voltage of new organic electrodes.
ISSN
2050-7488
URI
http://hdl.handle.net/10371/164965
DOI
https://doi.org/10.1039/c9ta01508f
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Material Science and Engineering (재료공학부) Journal Papers (저널논문_재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse