Browse

Deposition and stripping behavior of lithium metal in electrochemical system: Continuum mechanics study

Cited 13 time in Web of Science Cited 13 time in Scopus
Authors
Yoon, Gabin; Moon, Sehwan; Ceder, Gerbrand; Kang, Kisuk
Issue Date
2018-10
Citation
Chemistry of Materials, Vol.30 No.19, pp.6769-6776
Abstract
Metallic lithium (Li) is a promising anode candidate for high-energy-density rechargeable batteries because of its low redox potential and high theoretical capacity. However, its practical application is not imminent because of issues related to the dendritic growth of Li metal with repeated battery operation, which presents a serious safety concern. Herein, various aspects of the electrochemical deposition and stripping of Li metal are investigated with consideration of the reaction rate/current density, electrode morphology, and solid electrolyte interphase (SEI) layer properties to understand the conditions inducing abnormal Li growth. It is demonstrated that the irregular (i.e., filamentary or dendritic) growth of Li metal mostly originates from local perturbation of the surface current density, which stems from simulation surface irregularities arising from the morphology, defective nature of the SEI, and relative asymmetry in the deposition/stripping rates. Importantly, we find that the use of a stripping rate of Li metal that is slower than the deposition rate seriously aggravates the formation of disconnected Li debris from the irregularly grown Li metal. This finding challenges the conventional belief that high-rate stripping/plating of Li in an electrochemical cell generally results in more rapid cell failure because of the faster growth of Li metal dendrites.
ISSN
0897-4756
URI
http://hdl.handle.net/10371/164983
DOI
https://doi.org/10.1021/acs.chemmater.8b02623
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Material Science and Engineering (재료공학부) Journal Papers (저널논문_재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse