Browse

Exploiting Lithium-Ether Co-Intercalation in Graphite for High-Power Lithium-Ion Batteries

Cited 37 time in Web of Science Cited 40 time in Scopus
Authors
Kim, Haegyeom; Lim, Kyungmi; Yoon, Gabin; Park, Jae-Hyuk; Ku, Kyojin; Lim, Hee-Dae; Sung, Yung-Eun; Kang, Kisuk
Issue Date
2017-10
Citation
Advanced Energy Materials, Vol.7 No.19, p. 1700418
Keywords
co-intercalationfirst-principles calculationsgraphitehigh-power batterieslithium-ion batteries
Abstract
The intercalation of lithium ions into graphite electrode is the key underlying mechanism of modern lithium-ion batteries. However, co-intercalation of lithium-ions and solvent into graphite is considered undesirable because it can trigger the exfoliation of graphene layers and destroy the graphite crystal, resulting in poor cycle life. Here, it is demonstrated that the [lithium-solvent](+) intercalation does not necessarily cause exfoliation of the graphite electrode and can be remarkably reversible with appropriate solvent selection. First. principles calculations suggest that the chemical compatibility of the graphite host and [lithium-solvent](+) complex ion strongly affects the reversibility of the co-intercalation, and comparative experiments confirm this phenomenon. Moreover, it is revealed that [lithium-ether](+) co-intercalation of natural graphite electrode enables much higher power capability than normal lithium intercalation, without the risk of lithium metal plating, with retention of approximate to 87% of the theoretical capacity at current density of 1 A g(-1). This unusual high rate capability of the co-intercalation is attributed to the (i) absence of the desolvation step, (ii) negligible formation of the solid-electrolyte interphase on graphite surface, and (iii) fast charge-transfer kinetics. This work constitutes the first step toward the utilization of fast and reversible [lithium-solvent](+) complex ion intercalation chemistry in graphite for rechargeable battery technology.
ISSN
1614-6832
URI
http://hdl.handle.net/10371/165009
DOI
https://doi.org/10.1002/aenm.201700418
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Material Science and Engineering (재료공학부) Journal Papers (저널논문_재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse