Publications

Detailed Information

Recent progress in electrode materials for sodium-ion batteries

Cited 779 time in Web of Science Cited 851 time in Scopus
Authors

Kim, Hyungsub; Kim, Haegyeom; Ding, Zhang; Lee, Myeong Hwan; Lim, Kyungmi; Yoon, Gabin; Kang, Kisuk

Issue Date
2016-10
Publisher
Wiley-VCH Verlag
Citation
Advanced Energy Materials, Vol.6 No.19, p. 1600943
Abstract
Grid-scale energy storage systems (ESSs) that can connect to sustainable energy resources have received great attention in an effort to satisfy ever-growing energy demands. Although recent advances in Li-ion battery (LIB) technology have increased the energy density to a level applicable to grid-scale ESSs, the high cost of Li and transition metals have led to a search for lower-cost battery system alternatives. Based on the abundance and accessibility of Na and its similar electrochemistry to the well-established LIB technology, Na-ion batteries (NIBs) have attracted significant attention as an ideal candidate for grid-scale ESSs. Since research on NIB chemistry resurged in 2010, various positive and negative electrode materials have been synthesized and evaluated for NIBs. Nonetheless, studies on NIB chemistry are still in their infancy compared with LIB technology, and further improvements are required in terms of energy, power density, and electrochemical stability for commercialization. Most recent progress on electrode materials for NIBs, including the discovery of new electrode materials and their Na storage mechanisms, is briefly reviewed. In addition, efforts to enhance the electrochemical properties of NIB electrode materials as well as the challenges and perspectives involving these materials are discussed.
ISSN
1614-6832
URI
https://hdl.handle.net/10371/165031
DOI
https://doi.org/10.1002/aenm.201600943
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share