Browse

High energy organic cathode for sodium rechargeable batteries

DC Field Value Language
dc.contributor.authorKim, Haegyeom-
dc.contributor.authorKwon, Ji Eon-
dc.contributor.authorLee, Byungju-
dc.contributor.authorHong, Jihyun-
dc.contributor.authorLee, Minah-
dc.contributor.authorPark, Soo Young-
dc.contributor.authorKang, Kisuk-
dc.date.accessioned2020-04-25T08:00:34Z-
dc.date.available2020-04-25T08:00:34Z-
dc.date.issued2015-11-
dc.identifier.citationChemistry of Materials, Vol.27 No.21, pp.7258-7264-
dc.identifier.issn0897-4756-
dc.identifier.other59419-
dc.identifier.urihttp://hdl.handle.net/10371/165056-
dc.description.abstractOrganic electrodes have attracted significant attention as alternatives to conventional inorganic electrodes in terms of sustainability and universal availability in natural systems. However, low working voltages and low energy densities are inherent limitations in cathode applications. Here, we propose a high-energy organic cathode using a quinone-derivative, C6Cl4O2, for use in sodium-ion batteries, which boasts one of the highest average voltages among organic electrodes in sodium batteries (similar to 2.72 V vs Na/Na+). It also utilizes a two-electron transfer to provide an energy of 580 Wh kg(-1). Density functional theory (DFT) calculations reveal that the introduction of electronegative elements into the quinone structure significantly increased the sodium storage potential and thus enhanced the energy density of the electrode, the latter being substantially higher than previously known quinone-derived cathodes. The cycle stability of C6Cl4O2 was enhanced by incorporating the C6Cl4O2 into a nanocomposite with a porous carbon template. This prevented the dissolution of active molecules into the surrounding electrolyte.-
dc.titleHigh energy organic cathode for sodium rechargeable batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor강기석-
dc.contributor.AlternativeAuthor박수영-
dc.identifier.doi10.1021/acs.chemmater.5b02569-
dc.citation.journaltitleChemistry of Materials-
dc.identifier.scopusid2-s2.0-84946887546-
dc.citation.endpage7264-
dc.citation.number21-
dc.citation.startpage7258-
dc.citation.volume27-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.chemmater.5b02569-
dc.identifier.rimsid59419-
dc.identifier.sci000364614600008-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKang, Kisuk-
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Material Science and Engineering (재료공학부) Journal Papers (저널논문_재료공학부)
Files in This Item:
There are no files associated with this item.
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse