Browse

Route to the Smallest Doped Semiconductor: Mn2+-Doped (CdSe)(13) Clusters

Cited 42 time in Web of Science Cited 46 time in Scopus
Authors
Yang, Jiwoong; Fainblat, Rachel; Kwon, Soon Gu; Muckel, Franziska; Yu, Jung Ho; Terlinden, Hendrik; Kim, Byung Hyo; Iavarone, Dino; Choi, Moon Kee; Kim, In Young; Park, Inchul; Hong, Hyo-Ki; Lee, Jihwa; Son, Jae Sung; Lee, Zonghoon; Kang, Kisuk; Hwang, Seong-Ju; Bacher, Gerd; Hyeon, Taeghwan
Issue Date
2015-10
Citation
Journal of the American Chemical Society, Vol.137 No.40, pp.12776-12779
Abstract
Doping semiconductor nanocrystals with magnetic transition-metal ions has attracted fundamental interest to obtain a nanoscale dilute magnetic semiconductor, which has unique spin exchange interaction between magnetic spin and exciton. So far, the study on the doped semiconductor NCs has usually been conducted with NCs with larger than 2 nm because of synthetic challenges. Herein, we report the synthesis and characterization of Mn2+-doped (CdSe)(13) clusters, the smallest doped semiconductors. In this study, single-sized doped clusters are produced in large scale. Despite their small size, these clusters have semiconductor band structure instead of that of molecules. Surprisingly, the clusters show multiple excitonic transitions with different magneto-optical activities, which can be attributed to the fine structure splitting. Magneto-optically active states exhibit giant Zeeman splittings up to elevated temperatures (128 K) with large g-factors of 81(+/- 8) at 4 K. Our results present a new synthetic method for doped clusters and facilitate the understanding of doped semiconductor at the boundary of molecules and quantum nanostructure.
ISSN
0002-7863
URI
http://hdl.handle.net/10371/165071
DOI
https://doi.org/10.1021/jacs.5b07888
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Chemical Convergence for Energy and Environment (에너지환경 화학융합기술전공)Journal Papers (저널논문_에너지환경 화학융합기술전공)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse