Publications

Detailed Information

SnO2/Graphene Composite with High Lithium Storage Capability for Lithium Rechargeable Batteries

Cited 170 time in Web of Science Cited 184 time in Scopus
Authors

Kim, Haegyeom; Kim, Sung-Wook; Park, Young-Uk; Gwon, Hyeokjo; Seo, Dong-Hwa; Kim, Yuhee; Kang, Kisuk

Issue Date
2010-11
Publisher
Tsinghua Univ Press
Citation
Nano Research, Vol.3 No.11, pp.813-821
Abstract
SnO2/graphene nanocomposites have been fabricated by a simple chemical method. In the fabrication process, the control of surface charge causes echinoid-like SnO2 nanoparticles to be formed and uniformly decorated on the graphene. The electrostatic attraction between a graphene nanosheet (GNS) and the echinoid-like SnO2 particles under controlled pH creates a unique nanostructure in which extremely small SnO2 particles are uniformly dispersed on the GNS. The SnO2/graphene nanocomposite has been shown to perform as a high capacity anode with good cycling behavior in lithium rechargeable batteries. The anode retained a reversible capacity of 634 mA.h.g(-1) with a coulombic efficiency of 98% after 50 cycles. The high reversibility can be attributed to the mechanical buffering by the GNS against the large volume change of SnO2 during delithiation/lithiation reactions. Furthermore, the power capability is significantly enhanced due to the nanostructure, which enables facile electron transport through the GNS and fast delithiation/lithiation reactions within the echinoid-like nano-SnO2. The route suggested here for the fabrication of SnO2/graphene hybrid materials is a simple economical route for the preparation of other graphene-based hybrid materials which can be employed in many different fields.
ISSN
1998-0124
URI
https://hdl.handle.net/10371/165181
DOI
https://doi.org/10.1007/s12274-010-0050-4
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share