Publications

Detailed Information

Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump

Cited 278 time in Web of Science Cited 287 time in Scopus
Authors

Park, Jongnam; Koo, Bonil; Yoon, Ki Youl; Hwang, Yosun; Kang, Misun; Park, Je-Geun; Hyeon, Taeghwan

Issue Date
2005-06
Publisher
American Chemical Society
Citation
Journal of the American Chemical Society, Vol.127 No.23, pp.8433-8440
Abstract
We synthesized uniform-sized nanorods of transition metal phosphides from the thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump. MnP nanorods with dimensions of 8 nm x 16 nm and 6 nm x 22 nm sized were synthesized by the thermal decomposition of Mn-TOP complex, which was prepared from the reaction of Mn-2(CO)(10) and tri-n-octylphosphine (TOP), using a syringe pump with constant injection rates of 10 and 20 mL/h, respectively. When Co-TOP complex, which was prepared from the reaction of cobalt acetylacetonate and TOP, was reacted in a mixture solvent composed of octyl ether and hexadecylamine at 300 degrees C using a syringe pump, uniform 2.5 nm x 20 nm sized Co2P nanorods were generated. When cobaltocene was employed as a precursor, uniform Co2P nanorods with 5 nm x 15 nm were obtained. When Fe-TOP complex was added to trioctylphosphine oxide (TOPO) at 360 degrees C using a syringe pump and then allowed to age at 360 degrees C for 30 min, uniform-sized FeP nanorods with an average dimension of 12 nm x 500 nm were produced. Nickel phosphide (Ni2P) nanorods with 4 nm x 8 nm were synthesized successfully by thermally decomposing the Ni-TOP complex, which was synthesized by reacting acetylacetonate [Ni(acac)(2)] and TOP, We measured the magnetic properties of these nanorods, and some of the nanorods exhibited different magnetic characteristics compared to the bulk counterparts.
ISSN
0002-7863
URI
https://hdl.handle.net/10371/165975
DOI
https://doi.org/10.1021/ja0427496
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share