SHERP

Analysis of Flexible Bending Behavior of Woven Preform using Non-orthogonal Constitutive Equation

Cited 0 time in webofscience Cited 0 time in scopus
Authors
Yu, Woong Ryeol; Zampaloni, Michael; Pourboghrat, Farhang; Chung, Kwansoo; Kang, Tae Jin
Issue Date
2005-06-01
Publisher
ELSEVIER
Citation
Composites Part A 2005;36:839-850
Keywords
PreformMechnical propertiesComputational modelingAsymmetric axial modulus
Abstract
Previous studies by Yu et al. [Yu WR, Pourboghrat F, Chung K, Zampaloni M, Kang TJ. Non-orthogonal constitutive equation for woven fabric reinforced composites. Composites Part A 2002;33:1095–1105; Yu WR, Zampaloni M, Pourboghrat F, Chung K, Kang TJ. Sheet
hydroforming of woven FRT composites: non-orthogonal constitutive equation considering shear stiffness and undulation of woven
structure. Compos Struct 2003;61:353–62; Yu WR, Zampaloni M, Pourboghrat F, Liu L, Chen J, Chung K, Kang TJ. Sheet forming analysis
of woven FRT composites using picture-frame shear test and non-orthogonal constitutive equation. Int J Mater Prod Tech 2004;21(1/2/3):71–88] have illustrated the validity of the non-orthogonal constitutive relationship for predicting deformation behavior and changes in fiber angle in situations where woven preform was constrained by tools such as the die and blank holders. In the previous studies, the bending rigidity for out-of-plane deformation was assumed to be dependent on the in-plane stiffness; thereby the non-orthogonal constitutive equation being developed was based on the in-plane deformation geometry. The assumption for the bending rigidity was modified in this study by modeling the bending property using an asymmetric axial modulus. The asymmetric axial modulus was considered in order to utilize its ease in calculating bending rigidity from the in-plane stiffness, defining bilinear behavior over the range of tension to compression. The asymmetric factor, the ratio of compression and tensile modulus, for a woven preform was determined through simple cantilever deflection in the warp and weft directions, the validity of which was proven by conducting a cantilever deflection test and simulation in the bias direction. Finite element simulation of three-dimensional bending deformation was performed by using a non-orthogonal constitutive equation and the
asymmetric axial modulus. The results show that the draped shape obtained numerically is in good agreement with the experiments in both overall deflected shape and projected contour. A shaping process was also simulated to show the usefulness of the current approach. By including the gravity and contact loading, successful prediction was made but a need was identified that extends linear asymmetric factor into nonlinear form in order to simulate large deformation in bending.
ISSN
1359-835X
Language
English
URI
http://hdl.handle.net/10371/18917
DOI
https://doi.org/10.1016/j.compositesa.2004.10.026
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Material Science and Engineering (재료공학부) Journal Papers (저널논문_재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse