In Situ Compatibilizer-Reinforced Interface between a Flexible

Cited 0 time in webofscience Cited 14 time in scopus
Seo, Yongsok; Ninh, Tran Hai; Hong, Soon Man; Kim, Sehyun; Kang, Tae Jin; Kim, Hansung; Kim, Jinyeol
Issue Date
American Chemical Society
Langmuir 2006, 22, 3062-3067
We present an investigation of the interfacial reinforcement between a flexible folded-chain polymer (functionalized polypropylene−maleic anhydride-grafted polypropylene, MAPP) and a rodlike polymer (a themotropic liquid crystalline polymer, TCLP − poly(ester amide)). Fracture toughness was measured using an asymmetric double-cantilever beam test (ADCB). High fracture toughness at the bonding temperature of 200 °C indicates that a chemical reaction has occurred at the interface to provide a strong interaction between MAPP and TLCP. Despite the higher modulus of TLCP, the fracture was propagated in the TLCP phase because of inherent TLCP domain structure. An analysis on the locus of failure revealed that at constant bonding temperature the fracture toughness between MAPP and TLCP was influenced not only by the bonding temperature but also by the bonding time. The fracture toughness increased with the bonding temperature until 200 °C was reached and then decreased at higher bonding temperature. The fracture toughness increased with annealing time until it reached a plateau value. We ascribe the dependence of the fracture toughness on the bonding time to the progressive occurrence of two different failure mechanisms, adhesive failure and cohesive failure. The adhesive strength increased with bonding temperature whereas the cohesive strength decreased because of weaker adhesion between TLCP crystalline domains. The dependence of fracture toughness on bonding time was explained in terms of the TLCP crystalline domain structure.
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Material Science and Engineering (재료공학부) Journal Papers (저널논문_재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.